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Abstract 

Programming in conventional programming languages is awkward because the 

resulting programs are quite far from how we like to think about them, both 

conceptionally and representationally. By representing programs as 

semantically suggestive graphical images we can shorten the gap between 

mind and medium and thereby make programming more pleasant, efficient 

and less error-prone. A rich graphical interface can also aid naive 

programmers by making abstract concepts concrete. 

In this thesis we examine the use of pictures in programming. We point out 

the salient characteristics of pictures vs. text. In particular, the concreteness, 

random access nature, high transfer rate, namelessness, multi-dimensionality, 

and possibilities for animation render pictures well qualified for representing 

programs. We discuss in more detail the best form of a pictorial program 

display, and arrive at a solution based on data structures as the primary 

displayed aspect. We also assign other program aspects, like control and 

hierarchy, to picture dimensions, obtaining a unified view that allows the 

representation of programs as a single object instead of a series of different 

views. We develop techniques for reading and writing programs through 



sequences of pointing actions animated on top of the data structure display, 

mimicking the way people informally explain programs through handwaving 

on data structure illustrations. 

We describe a concrete implementation of our ideas about programming in 

pictures. The system is based on a functional programming model. It allows 

the creation of functions where the data types of input and output objects are 

illustrated by the user. The user inputs pictures related to the application 

domain and inserts them in an algorithmic framework supplied by the system. 

We show how our style of programming leads us to a version of programming 

by example. 

Finally, we examine what audience would benefit the most from a pictorial 

programming system, and what kind of applications these people would be 

interested in. We define the term ‘casual programming‘ as the creation of 

small programs by naive or casual users, and identify this as a useful 

application area of programming in pictures. 
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Chapter One 

Introduction 

1.1. Background 

After decades of being concerned primarily with highly technical issues, like 

operating systems and compilers, mainstream computer science finally seems 

to direct substantial effort outward, and consider how computer systems are 

to be designed in order to accommodate the human user of the systems. A 

certain maturity in traditional fields has probably contributed to this 

development, but the main reason for the upsurge of interest in human- 

computer interaction is most certainly the widespread use of microcomputers: 

When millions of people use computer technology every day in their work and 

at home, the way computers appear to their users becomes important to the 

well-being and productivity of a large segment of our society. 

One approach to building better user interfaces is based on artificial 

intelligence. The AI community has done extensive work on techniques that 

allow humans to communicate with computers via natural language. 

Currently, much work is also being done on expert systems, that simplify the 

dialogue by being capable of deductions within an application domain. 



Another approach, which concerns us here, makes use of current technological 

advances that have made high-resolution bit-mapped graphics available on 

inexpensive microcomputers. Traditional computer systems show very little 

of their internal state to the user. This means that the user must mentally 

store and manipulate a large, complex, and abstract structure without getting 

more than hints from the computer whether his/her conjectures about the 

state are correct or not. Screen editors, spreadsheets, and electronic desktops 

are recent developments that attempt to remedy this situation by showing as 

much of the state as possible on the computer screen. High-resolution 

graphics allows more detailed and meaningful pictures to be drawn, thereby 

increasing the information content of the screen. 

An additional aspect of the new technology is its interactive nature. Static 

graphics has traditions in fields like the arts and advertising, and dynamic 

graphics is being used in video and television. Dynamic interaction, however, 

has not been widely explored, with the exception of video games (which, since 

the input is not graphical, does not strictly qualify). Thus, there seems to 

exist a vast potential for sophisticated techniques of communication between 

humans and computers, and much current research is involved with finding 

systematic ways to exploit this. 

In this thesis, we will examine how we can utilize interactive graphics to 



improve computer programming. We will do this by developing a concrete 

system for programming in pictures. Current programming languages and 

environments are usually rather painful to use, mostly because they have 

come a very short way in adapting to the human user rather than to the 

technology they are based on. This lack of adaptation exists both at the 

representational (i.e. the graphical layout) and at the conceptual (i.e. the 

computational model) level. Research in, for example, functional and logic 

programming tries to remedy the latter. Concerning the former, we argue in 

this thesis that it seems worthwhile to attempt to make programming more 

pleasant by bringing more of the abstract properties of programs out on the 

computer screen. 

1.2. Pictures and text 

Before we attempt to design a picture-oriented programming system, we have 

to understand pictures and how they relate to programming. In this section 

we examine pictures to see what inherent features set them apart from textual 

forms of representation. Next, we show how these features match key aspects 

of programming, and therefore how pictures provide a better medium for 

representing programs. 



1.2.1. What are the main features of pictures vs. text? 

Pictures and text are the most prominent carriers of non-numeric information 

in our society, and this has been the case ever since the invention of writing 

3500 years ago. Given these two media, we are constantly faced with the 

decision of which one to express ourselves in. We usually make this tradeoff 

without very much consideration, sticking to our habits and established 

conventions rather than making a conscious choice of the best strategy. 

Before we start investigating how computer programming relates to these 

media, it is useful to sum up the most important characteristics of pictures vs. 

text. 

Random vs. sequential access. Exactly how we ‘access’ a picture is 

hard to determine, but the parsing process is in any case so fast that it seems 

we have instant, random access to any part of the picture we are looking at. 

In fact, it is completely effortless for us to shift our attention between 

different parts of the picture and to alternate between detailed and overall 

views. Recognition of known features is usually also almost instantaneous. 

Text, on the other hand, is strictly sequential. Partitioning and good 

headlines can to some extent speed up the search for a particular piece of 

text, but at some level we always have to resort to sequential scanning. Also, 

it is usually hard to gain an overview of the matter described without first 



reading the detailed representation. On the other hand, the sequential order 

of the alphabet makes it possible to sort and thereby easily search through 

large amounts of written information. It is very hard to sort pictures! 

Another, related feature of pictures is that they provide several means for 

drawing attention to their individual parts. Colors or shades, prominent 

shapes, and geometrical composition can all be used for this purpose. When 

we use italics, bold face, capitals, or other forms of textual highlighting we are 

really borrowing from the pictorial domain to make text access less sequential. 

Dimensions of expression. Text is sequential, and, moreover, it allows for 

only one kind of representation of information: a one-dimensional stream of 

words. Pictures are much richer in this respect. Not only do they provide 

two (or three, or even more) dimensions along which to lay out the 

information, but there is also a host of other properties borrowed from the 

physical world that we can utilize, like shape, size, color, texture, direction, 

and distance. Since the language for representation is richer, the encoding of 

each piece of information can be more compact in pictures, just as a number 

expressed in decimal notation generally contains fewer digits than when 

expressed in binary. The encoding and decoding processes needed for writing 

and reading should therefore potentially be much faster for pictures than for 

text. 



Transfer rate. The above two aspects of pictures and text explain the fact 

that pictures generally can be read with a significantly higher information 

transfer rate than text: both the access and the decoding is more efficient. 

This is witnessed by the increased use of pictures in places where a lot of 

information has to be transferred rapidly, from advertisements to operating 

instructions (e.g. for telephones, [Karhan 83]), traffic signs to control system 

displays. Of course, it is possible to express something pictorially in such a 

way that no one can understand it, just as the advertising industry has shown 

that the proper words displayed in the correct way can have a tremendous 

effect (how much of this is graphics and how much text?), but the fact 

nevertheless remains that we are experts with pictures rather than text. 

Remember that our sensory system is set up for real time image processing, 

whereas text processing is a recent invention by humans. 

Concrete vs. abstract. Pictures are direct descendants of the images we 

see around us every day, images representing concrete objects. Text mirrors 

our thoughts, detached from any physical reality. Pictures therefore appear 

concrete, regardless of how abstract the ideas they purport to illustrate may 

be. This makes them easy to think in terms of, since much of the apparatus 

we have to deal with our surroundings can be brought to bear on any picture. 

For example, our capabilities to judge sizes, shapes, distances, etc. can be 



directly applied. Text, on the other hand, is an artificial invention, and so it 

is not tied to any existing framework. But this is also its strength: Textual 

abstraction allows us to describe concepts that are not easy to explain with 

bones and pebbles. 

Compactness and preciseness. These issues are completely dependent on 

application. Even though we concluded that pictures yield more compact 

encoding, and a picture is supposed to be worth a thousand words (how many 

words do we need to describe a human face?), it is not hard to come up with 

examples where text is superior (how many pictures do we need to describe 

the word ‘culture’ ?). Textual abstraction is an immensely powerful tool that 

contributes at least as much to compactness and preciseness of textual 

information as richness of language and metaphorical content does for 

pictures. 

Language independence. An interesting aspect of pictures is that they are 

not based on language, and hence are independent of it. Ideally, pictures 

should therefore be understood in any country without need for translation. 

This has been taken advantage of in many cases, e.g. European traffic signs, 

garment care labels and informative signs in airports. For products sold all 

over the world, textless icons in the user interface can save expensive multi- 

version manufacturing (for example of microcomputers, [Williams 84]). One 



has to be careful not to include culturally dependent notions in the pictures, 

though. 

Other issues. Pictures have more properties that are of interest to us here, 

and that we will say more about in connection with programming later: 

Pictures do not need to name their objects since these are present and 

can stand for themselves. Text must always use names and can 

therefore only refer to objects indirectly. Thus, pictures provide 

windows into the real world, whereas text can only point to the real 

world. 

Pictures can be set in motion to show dynamics directly. Text can only 

describe it. 

Text forces us to create our own mental images to grasp what we read. 

Pictures give us the images for free. 

Both text and pictures provide a medium for aesthetic expression. But 

pictures are a more easily accessible and more versatile medium, at least 

if we are to judge from our surroundings, the physical appearance of our 

society, where graphical designs flourish, but text is only trivially used. 



The above characteristics of pictures vs. text should already tell us something 

quite clearly: When there is much interaction between representation and the 

mind, pictures appear to be the superior medium. In particular, the high 

information transfer rate, richness of language and random access nature of 

pictures contribute to a more effortless interchange. Text is better suited for 

sequential operations, like reading a novel or telling a story. Computer 

programming is a highly interactive affair, and it could therefore benefit 

greatly from a more graphical style of presentation. 

But programming is not the only area that has been biased toward text. 

From news articles to shopping lists, textbooks to recipes, wouldn't the 

presentation be more attractive and the matter easier to absorb if the 

pictorial content were increased? If we look at present material, the answer is 

usually positive. A well-illustrated article is much more appealing than a dry 

piece of text. (And, we usually look at the pictures before we read the text, 

don't we?!) To the extent that pictures are used they are quite often not 

allowed to talk for themselves. They are demoted to illustrations, with an 

accompanying text stating essentially what can be deduced from the pictures 

as well. 



1.2.2. Why is our society biased toward text? 

With television and new printing techniques the amount of pictures that we 

see daily has increased markedly in the past. There are, however, some 

reasons why our society is still a text-biased one, reasons that may disappear 

in the near future due to the computer medium. 

Technological base. Starting at the technical end, we observe one reason 

why text has enjoyed such popularity: Text is easy to represent and 

distribute. The situation is parallel to analog vs. digital representation of 

electrical signals. Text is largely independent of variations in the medium 

(fonts, colors, print quality, layout of the pages, etc.) whereas a picture 

generally is sensitive to such changes. As computer professionals we also 

know how much harder it is to implement a good picture handling system 

than one which handles text, and how much easier it is to define standards for 

text representation than for pictures. The reason for this is of course that 

text is composed of a few atomic symbols, just as digital electronics use a few 

standard voltages. Text is also a sequential medium, making it more 

straightforward to handle than two-dimensional, let alone three-dimensional 

pictures, since much of our technology is based on sequential machinery and 

procedures. Today, cheap microelectronics seems finally to have made us 

able to handle, display, and distribute pictures more or less as easily as text. 



Education. When asked why we would choose to express ourselves through 

text rather than pictures, most of us would probably answer that it is much 

easier for us, and that we have no idea of how to give a good graphical 

presentation. But this does not necessarily imply that pictures are harder per 

se. We all spent about a decade at school perfecting our writing skills, but 

how much was said about graphic design and visual communication? When 

we write, we can therefore rely on a lot of experience, as well as a sound base 

of rules on syntax, grammar, form and style, whereas when it comes to 

graphics, most of us are really illiterate. That is why even simple drawing 

work looks so much better when done by professionals. Much of what we 

think requires artistic talent could probably be taught, just as we can learn to 

improve our writing style. Modern computer-based graphics editors also 

provide support that can substitute for much of the virtuosity needed to 

handle a paintbrush. As the image becomes a more easily accessible medium, 

education in related areas needs to be improved in order to enable people to 

utilize it better. 

Prestige. It is quite interesting to observe that, even though we take it for 

granted that people in the industrialized world can read and write, there is 

still a fair amount of prestige associated with textual presentation. A 

description in terms of pictures easily conveys a feeling of being too simple, as 



if the pictures should suggest that the description is meant for people who 

cannot even read. It also evokes thoughts about pictorial product 

descriptions, ‘as easy as 1-2-3‘, and about comics and cartoons, some of 

which admittedly belong to the lower end of the intellectual scale. Text is 

considered more ‘formal’, even though it is usually not hard to find 

simplistic and imprecisely written language, and there are no rules against 

formalization of figures. It is not that many years ago that the London Times 

for the first time printed a photograph on its front page, insulting the intellect 

of some of its readers. The prestige gap that traditionally has existed 

between journalists and photographers, and authors and illustrators, is also a 

case in point here. Today, as technology permits simpler and cheaper 

dissemination of pictures, and as the effectiveness of pictures as a 

communication medium is recognized, these attitudes are changing rapidly. 

In everything from photojournalism to computer interfaces, the value of 

textless communication is appreciated. 

So, are we moving toward a textless society? Certainly, not. There are good 

reasons why text is the prevalent carrier of graphically encoded information 

between humans. Text is a direct representation of language, and language is 

the key to the advancement of human perception. Speech has been developed 

into such a powerful tool that it is usually more convenient for us simply to 



say what we mean than to show it by means of drawing, acting, or actually 

doing what we have in mind. This fluency in language is transferred to the 

graphical domain and causes text to dominate over pictures. We are here 

only arguing that there are areas where an increased use of pictures seems to 

be appropriate. 

We mentioned the prestige myth associated with the use of pictures. There 

are other problems with pictures that turn out not to be real. For example, 

one obstacle we encounter when we want to express something through a 

picture is the lack of predefined symbols. It is very hard to understand a 

description based on more than trivial depictions of well-known physical 

objects. But this is just a problem of consensus rather than a deficiency of 

pictures. Earlier civilizations have made perfect sense out of cryptic pictures, 

and, if we look around us, we can still see lots of pictures that are not only 

well defined, they also stand for quite complex structures (chess pieces, traffic 

signs, company logos, etc.). With graphical command symbols, called icons, 

attaching meaning to pictures has already become a part of application 

programming. 

One of the ways language has achieved such great power and versatility is 

through the idea of abstraction. To let one word stand for a whole set of 

ideas and concepts that may need lengthy explanations to be defined (if they 



are definable at all) is something that can seem relatively harder to achieve in 

pictures, particularly when the domain of discourse moves away from what 

we see around us. We have all used various diagrammatic techniques to 

represent abstract concepts like system structures, but we always run the risk 

of indicating more meaning than we intend to. Pictures are rooted in real 

life; we are constantly surrounded by them (some created by humans, some 

not). This makes pictures so replete with metaphorical content that it is 

always hard to use them without saying more than we had in mind. For 

example, in a diagram consisting of boxes and other shapes connected via 

lines, does it make a difference whether two boxes are beside each other or 

one above the other? Does shape have significance; for example, are objects 

of square shape easier to combine with each other than circular ones? 

On the other hand, abstraction quite often uses metaphor to achieve its effect. 

Given the metaphorical richness of pictures it should therefore be possible to 

find good metaphors that allow us to construct the powerful abstractions we 

need.1 

The concreteness and metaphorical richness of pictures can be seen as their 

great potential, and it is the topic of this thesis to show how this can be 

1Apple Computer's trashcan for document and file disposal is already a famous example. 



exploited to improve computer programming. It is still easier for most people 

to think in concrete terms, and if we can control the power of metaphorical 

associations, we can create systems that are very efficient and smooth to use. 

1.2.3. Why should we use pictures when programming?

In the previous section we concluded that, in an interaction-rich activity like 

programming, the high transfer rate, richness and random access nature of 

pictures give the graphical medium strong potential advantages over text. In 

this section we will expand further on why pictures are suitable for 

programming. 

Mental images. When we think about a computer program, or any other 

abstract structure, most of us form some kind of mental images of the 

structures we build or try to understand. Interviews with good programmers 

reveal that they support their creativity with rather vivid images of program 

statics and dynamics [Molzberger 83]. Many of us see other abstract concepts, 

like time or music, as pictures of some sort. It seems that our roots in a 

physical world demands physical interpretations of all our thoughts. This is 

because we learn by extending known structures through metaphors [Carroll 

82], and the physical world contributes the largest base of good, consistent 

structures we can use. We see this in our languages, where abstractions often 

are expressed by metaphorically transforming the meaning of words of 



concrete origin. The pictures in our mind's eye are in the same way graphical 

metaphors explaining abstract concepts in terms of concrete allegories. 

The pictures in our mind are difficult to capture, though. They are usually 

quite imprecise, just flashing by in an instant, allowing us to use some aspect 

of them that helps to shed light on our thoughts. Bringing the pictures out in 

the open is neither possible, not is it certain that it would be helpful to 

scrutinize them in too much detail. Still, isn't it a worthwhile challenge to try 

to illustrate our work with pictures that evoke some of the insight that we get 

from our own imagination? 

Concrete pictures. We argued previously that pictures convey a degree of 

concreteness, whereas text is a good vehicle for abstraction. Computer 

programming is an intellectual exercise, building abstract structures based on 

an equally abstract computational model. Doesn't it seem paradoxical, then, 

to try to use pictures in this connection? Maybe so, but the paradox can still 

make obvious sense: We do need and we do use pictures to support our 

abstract thinking. Different people may use different images to explain the 

same concepts. It is not clear whether different pictures are optimal for 

different people, though. In fact, another person's view can sometimes 

contribute a better way to see things. Some images seem to be generally 

acceptable as useful illustrations. If we manage to capture the ‘right’ kind 



of images for a certain abstract domain this will help not only the specialist to 

formulate and communicate thoughts faster and better, but in particular it 

will aid the novice who is groping for concrete handles into unfamiliar matter. 

The reason why professional programmers have been able to interact 

successfully with complex computer systems through primitive interfaces is 

largely that they, after several years of daily experience, have acquired a 

clear, fairly complete model of the system in their minds. The naive or casual 

programmer, however, does not have the opportunity or interest to 

accumulate this abstract knowledge. For such users we therefore need to 

present the model along with the interface, and this is probably best done via 

some graphical representation. Learning computer programming is best done 

by building a concrete model of the computer [Mayer 81]. In a way that text 

can never manage, a concrete picture can unveil abstract structure and in an 

instant bring understanding both individually and between people. Computer 

programming is one abstract discipline where we can use pictures, not in spite 

of their concreteness, but because it reduces the abstractness. 

Random, fast access pictures. A program is a complex abstract object. 

There are many components, interrelated in many different ways and with a 

number of different attributes. When we reason about a program, we think 

about all these aspects in a fairly unstructured, random fashion, our thoughts 



flowing freely over large parts of the program. We therefore need a 

representation that not only is capable of expressing this multitude of notions, 

but that also provides us with direct, effortless access to program information. 

Text can, with the aid of textual abstraction, represent anything, but it seems 

that text, in its sequential, encoded form does not provide random access, nor 

is it usually effortless to decode the symbolic code. Pictures, on the other 

hand, have a wonderful two-dimensional, random-access nature. It is also a 

medium so rich that there is room for direct representation of a large amount 

of concepts with a very shallow level of encoding. If we manage to pin down 

all our programming concepts in a graphically obvious way, we can therefore 

obtain a representation that supports our mind with constructive metaphors 

rather than presenting us with obstacles that have to be overcome. 

Pictures of the real world. Programs may be abstract, but in most cases 

they actually deal with aspects of the real world. Whether it is a home 

accounting package or an airline booking system, a program is a model of a 

part of reality, or at least it builds a computational structure on top of it. 

Reality is usually rich in pictures of various kinds, and it is therefore natural 

to attempt to include some of these in our programs to help explain them. 

But this is possible and convenient only if we have a graphical framework for 

expressing programs. It should be up to the programmer to decide what 



pictures from the real world and what pictures from the programming world 

are useful in the description of a particular program, and only a general tool 

providing complete freedom for creative graphical expression of programs can 

support this. 

When we open up the world of programming to elements from the real world, 

we lose mathematical preciseness. We can no longer hope to find a unique, 

canonical, representation of a program, since two programs that are 

computationally equivalent can have different real world semantics. (A given 

program still has a unique semantics, of course!) But if the programs are 

different as seen from the programmer, why shouldn't the representation 

reflect this? In a sense, we are capturing part of the thought process that lead 

to the program in addition to the program itself, as suggested by others 

(Martin-Lof, p 15 in [Karlsson 82]; [Krueger 83], pp 186-187). A free form 

representation should also inspire some creativity and encourage the 

programmer to put his/her ‘personal touch‘ on the program. We will 

shortly expand further on the benefits of this in a paragraph on aesthetics. 

Pictures without names. The idea of naming is a marvelous invention 

that allows indirect reference of objects, and is also a basis for abstraction. 

The indirection enables us to refer to objects that are not physically present, 

either because they are out of our immediate view, or because they do not 



exist physically. Objects that are physically present can alternatively be 

referenced directly through pointing, touching, etc. Naming may be a 

powerful concept, but it nevertheless introduces a second level of reference 

that can be an obstacle from time to time. How often do we find ourselves 

uttering something like ‘you know, that ...  er ...  thing‘ and then waving 

our hands as if we were creating a picture of the object, or pointing in the 

direction of its location. When we know which object we have in mind, we 

can point at it without any effort if it is present. The name of an object, 

however, is an artificial attribute that requires mental activity to find. 

In a program written in a conventional, textual programming language, our 

only way to refer to objects is by name. This means that all our objects are 

referenced indirectly and are, in fact, invisible to the programmer. (It is quite 

tempting to call the traditional textual approach to programming ‘Blind 

Programming‘, as opposed to Programming in Pictures.) This has the effect 

that all operations the programs perform are ‘covert actions‘ performed 

behind the scenes. We know they are performed, but we only represent them 

implicitly, and the programmer has to do the mapping mentally. 

There are also other problems with not having any means for direct object 

reference. We are forced to attach names to all existing objects, whether 

interesting or not. In large programs this can really become a burden, 



especially since most names have to be unique, and we often find ourselves 

inventing various naming conventions that will help us generate a large 

number of more or less meaningful names in a fairly mechanical fashion. A 

related problem exists in VLSI-CAD for off-sheet connections [Maling 81]. 

The typing of names also introduces many possibilities for error in referring to 

a specific object. When we point, we very rarely point to the wrong object! 

Pictures lack the indirection that names have. Of course, one could claim 

that a picture is no less a label for an object than a name is, the only 

difference is that it is graphical. This is not entirely valid, though. Since we 

are surrounded by a real world full of pictures and most of us have an eye 

that parses these pictures quickly, a picture is rather perceived as a window 

into a piece of reality that otherwise would be outside our view at the 

moment. Hence, a picture of an object can be identified with the object itself 

in a way that a name cannot. When we program in pictures we therefore 

introduce a concreteness we have not enjoyed before. The pictures of our 

data, procedures, etc. become the constructs they depict themselves. The 

programmer is relieved from constantly having to bridge the gap to the 

invisible objects referred to by names. They are rather put in his/her hands, 

so to speak. 

Pictures really remove most of the need for naming. If all persons and other 



objects we cared about were occupying one room, we wouldn't need names, 

we could just point. When all our program objects are visible as ‘real’ 

objects on a screen that we can point at, we likewise do not need names for 

them. The names become auxiliary, optional attributes, and several objects 

may have the same name. 

Animated pictures. A program is a dynamic object. To study the details 

of a program we really have to see it in operation. Hence, one could argue 

that the depiction of a program should have a dynamic, or animation, aspect 

to it. But for this we need a dynamic medium. Text is by birth a static 

medium, being carved in clay or printed on paper. Thus, if we attempt to 

impose a dynamic component on it, this will necessarily have to be a rather 

artificial extension. For example, a cursor that jumps line by line, following 

the execution, can only capture the control structure of the program. It has 

to be augmented by a depiction of how the corresponding data are 

transformed. But this is drawing pictures of the data, escaping outside the 

text domain. 

Pictures, on the other hand, are everywhere around us, full of dynamics. 

Taking a pictorial representation of programs as a starting point, it should 

therefore be easier to find good dynamic transformations of the pictures, that 

will exhibit the program dynamics in a more natural and coherent way than 

text. 



Metaphorically rich pictures. Since pictures are interpreted as windows 

into the real world, they automatically provide a huge base of graphical 

metaphors. Along with this comes our ability to reason and make judgments 

in terms of these metaphors. We can utilize this to make it easier to think 

about programs, by attaching semantic significance to graphical relationships 

concerning shape, size, distance, etc. For example, it seems reasonable to 

require that programs that are similar in function also should look quite 

similar, and, conversely, that different programs should be easy to distinguish. 

This is definitely not the case with conventional program text, where the only 

distinguishing feature is the number of nested clauses. By the same token, we 

would like certain features, like parallelism, to stand out well. In general, 

‘good’ features (time/space efficiency, ease of understanding and 

maintaining) should make a program pretty, whereas ‘bad‘ features should 

make it ugly and unpleasant to look at. If there is an error, the program 

should ideally not ‘look right‘, as if it were out of balance somehow. These 

goals are very hard to achieve, but ultimately we will have to build this kind 

of mechanism into our programming systems if we want to make full use of 

an important part of people's reasoning power. This can only be achieved 

through pictures. 

Aesthetic pictures. The aesthetic content of programs is an issue that 



easily can seem rather controversial from within a field as technical as 

computer science, but that nevertheless has great importance if we try to 

relate to much of the real world around us. Purists might claim that the only 

real aesthetics a program possibly can contain is the mathematical beauty 

expressed in a compact, elegant algorithm. Many people cannot appreciate 

such abstract aesthetics, however, but this is the only form of aesthetics that 

a textual representation of programs can convey. If we look around us in 

society there are so many other ways people get aesthetically stimulated: 

music, poetry and literature, haute cuisine, and a plethora of graphical and 

plastic media, like architecture and city planning, ads and commercials, 

product design, and printed material. We realize particularly well how 

extensive this contribution is to the look of our society when we visit other 

countries with other aesthetic styles (which, if we look closely, can be 

surprisingly different, from huge buildings even down to the design of text 

fonts!). This texture of society influences how we feel about our surroundings, 

and it provides a collection of media for creative exploration. 

The computer is a completely general tool that will have to fit into numerous 

slots in this fabric. It will therefore also have to subsume and contribute to 

the numerous aesthetic media. Thus, in our programs, we have to look for 

ways to express other kinds of aesthetics than the purely algorithmic one. 



This work is primarily oriented toward graphics, so we will here only explore 

how to increase the pictorial content of programs. This is an important part, 

though. No other aesthetic domain influences our daily environment more 

than the graphical one. 

How can the use of pictures in programs help more people enjoy their 

creation and use? Few things bring such satisfaction and can contribute to 

one’s self-esteem in such a degree as when one is given the opportunity to 

unfold one‘s creative abilities. Of course, the amount of creative talent varies 

tremendously from person to person, and this has had the effect that people 

with only an average amount of talent have not pursued it at all. This is due 

to a fear of being compared to the masters, whose works are given ample 

exposure by the modern techniques of cultural dissemination, but also because 

it is usually associated with extra time and effort to contribute anything 

beyond the pragmatical minimum. It is a major undertaking to find drawing 

paper and special pencils and sit down to create something. Moreover, it 

becomes a rather meaningless activity if it is not attached to anything, if it 

doesn't have a particular purpose. We are so used to everything we do 

having some rational value that can be measured in dollars or seconds, that 

exploring our own imagination becomes an unnecessary luxury to many 

people. In order to put people into a position where they will naturally 



explore their creative abilities, it has to be effortless, almost automatic, for 

them to do this. Creative self-expression has to be part of our daily routines 

in a much higher degree than is presently experienced by most people. 

We believe that the success of the computerization of society depends in part 

on the degree to which we can utilize this new medium to weave creativity 

into daily life, at least if we define success as the increased well-being of 

people. The electronic revolution presents us with the unprecedented 

opportunity to design in detail a large portion of the environment and 

routines for work and private life. We should use this to build surroundings 

that contain the freedom needed for unconstrained creative exploration, yet 

provide the support necessary to do the job in question, thus helping people 

enjoy their own and others’ personal contribution. Furthermore, we should 

give the worker the opportunity to apply his or her abilities to redesign the 

workplace according to personal taste. Opening up for spiritual and 

emotional expression along with the pragmatic and logical could enrich the 

individual's job experience and make the computer a tool for self-realization 

rather than a technological threat to the quality of our lives. After all, 

dehumanization of society is a result of decisions rather than technology itself 

( [Krueger 83], p 53). 

Of course, one might fear that activities that are not strictly productive will 



take the upper hand and reduce the workers’ efficiency, but this need not be 

the case. Firstly, it may not really be a question of extra activities, but of a 

different way to do things, not necessarily less efficient, or of filling in spare 

moments. Secondly, a work environment that inspires people to have fun in a 

creative way may establish an enthusiastic mood that in itself may increase 

overall performance. This is of course rather speculative, but it does not seem 

unlikely that technology in this way can improve the creativity level, well- 

being and self-esteem of the workforce. 

Part of the rationale for programming in pictures is to change the 

programming activity in this spirit, making it more pleasant and accessible for 

a wider audience. In doing so, we may in the process help more people 

discover the abstract beauty of programs as well. Whether we will be able to 

improve the real efficiency of programming or not, we will still have gained 

something if we can improve the subjective efficiency of programming, as seen 

from the individual programmer. 

1.3. Goals of the thesis 

The primary goal of this thesis is to make a strong argument for the case of 

using pictures to represent programs. We will do this by examining pictures 

to some detail, identifying the reasons why they provide a good medium for 

expressing programs, and what form pictures of programs should take. The 



main contribution, however, will be the design and implementation of a 

concrete system that illustrates our ideas about graphical programming. 

Through our implementation we will try to further locate advantages and 

problems with programming in pictures. Specifically, we are interested in 

determining the class of users most likely to benefit from our approach, and 

the kind of programs our system is useful for. It is our view that in a field as 

applied and user-oriented as this one, the best way to make progress is to 

implement our ideas, draw experience from our experiments, consolidate what 

we learn, get new ideas, and start over. 

1.4. Plan of the thesis 

To relate our work to relevant parts of computer science, we briefly 

summarize in chapter 2 some interesting developments in other fields. A 

characteristic of our topic is that it touches a quite large number of areas 

within computer science (and some outside it, too). 

We next continue where the informal thoughts about pictures in this 

introduction left off, and in chapter 3 discuss in detail what options we have 

for representing programs as pictures. We then make some key decisions with 

respect to our concrete implementation. 

Chapter 4 introduces and describes our implemented system proper. The 



presentation is rather informal, focusing on the interesting and novel aspects 

of the system, and interspersed with justifications of our design decisions. 

Some advanced features of the system not covered in chapter 4 are dealt with 

in chapter 5. Here, we point out the connection between pictures and 

programming by example, and show how our system supports this. 

Finally, chapter 6 discusses some remaining issues related to our design. In 

particular, we identify a class of programming for which a system like ours 

seems to provide an excellent tool. We call this class casual programming, 

since it involves programming of small programs by people who do not spend 

a significant part of their time programming. 



Chapter Two 

Related work 

There is really not much previous work in the area of interactive, graphical 

program representation. A few systems have been designed with more or less 

similar goals to our own, but few of these have been very innovative. On the 

other hand, designing a programming system raises a whole family of issues 

related to the computer programming activity, ranging from the purely 

technical, via human concerns, to the philosophical. We must therefore take 

a look at recent developments within a number of fields, all of which can 

demonstrate important results that have a bearing on our work. In this 

chapter we will highlight interesting research in the most important related 

fields and comment on how we can incorporate these results into our own 

work. We will also here give a brief account of other, similar projects. 

2.1. Primitive program displays 

Using pictures in connection with programming is certainly not new. Pictures 

of various kinds have been used, both formally and informally, as an aid for 

programmers, illuminating one or more aspects of the program. 



The best known graphical programming aid is probably the flowchart. 

Flowcharts were developed as a tool for assembly language programmers. 

Assembly programming allows completely unstructured control transfers, and 

the data often consist of an uninteresting global pool of storage. Flowcharts 

match this kind of programming very well, in that they clarify the intricate 

control structure graphically, while leaving the trivial data structure 

undescribed. For present-day structured programming, however, disciplined 

control constructs, scoping, data types and non-trivial data structures render 

flowcharts emphatically obsolete as a general graphical tool. That they are 

still being used in education and industry testifies to the severe lack of good, 

systematic graphical aids supporting current programming methodology. 

Structured charts, or Nassi-Shneiderman diagrams (fig. 2-1), impose structure 

on program control, and coupled with a syntax-directed editor correspond 

well to how we would like to see our programs built systematically. Still, 

data are all but ignored graphically, and the pictures used to display control 

structure are rather uninteresting and perhaps convey more information 

about program component breakdown than a feeling for how the control 

flows. 

State diagrams and Augmented Transition Networks (fig. 2-2) can only be 

used for simple automaton-type program pieces, but for these they show very 



Figure 2-1: Nassi-Shneiderman diagram. 

clearly how input is parsed and output generated. They are related to 

flowcharts and suffer from the same lack of support for data and control 

structure. Rothon diagrams (fig. 2-3) are another flowchart derivative that 

manages to enforce some structure on control [Brown 83]. Petri nets, often 

used for hardware descriptions (fig. 2-4), formally show how control flows 

through a network via a token mechanism. 

The diagrams mentioned so far all describe program control flow in some 

way. One primary feature of control flow diagrams, especially node-arc based 



  

Figure 2-2: State diagram. 

    

Figure 2-3: Rothon diagrams. 

drawings like flowcharts, state diagrams, etc., is that they are excellent for 

animation: A system that ‘executes’ a diagram by successively highlighting 

nodes as the computation proceeds provides great insight into the control 



  

Figure 2-4: Petri net. 

mechanism of an algorithm. In addition, flow graphs can show concurrency 

quite dramatically as multiple "foci of control’ move around the network. 

For certain types of software, like control systems, control is the major aspect 

of the system, and a display focusing on the control flow would be the natural 

choice. 

Pictures of data flow (fig. 2-5) have mostly been used in connection with 

dataflow languages and systems [Davis 82]. Here, as with functional 

programming and state diagrams, data flow is identical to control flow, so we 

might as well talk about the latter. Indeed, flowcharts and data flow graphs 

share the same problems: undisciplined structure leading to messy diagrams, 



and no support for non-trivial data structures. As control flow graphs, data 

flow graphs are suitable for animation, with node highlighting showing the 

progress of data through the network and emphasizing the parallelism 

obtained. 

Figure 2-5: Data flow diagram. 

Most programmers use some kind of 'boxology' technique to describe the 

overall structure of their systems, like a module interconnection graph where 

the arrows between the boxes represent access to code or data. Figure 2-6 

shows the module breakdown of our system for programming in pictures. As 

a basis for a system browser that allows the programmer to get an overview 



of a large system, such a facility is very useful. It fails, however, to provide 

support for programming-in-the-small, where the simple, static component 

description must yield to dynamic control and data structures. 

   

        

    

Figure 2-6: Structure of our PiP system. 

There are certainly many other specialized diagrams that help shed light on 

some aspect of a program, especially if we consider high-level concepts. For 

example, figure 2-7 shows scheduling dependencies among simulation 

processes. General diagrams that cover more than one simple aspect of 

programs are hard to find, though. 



Figure 2-7: Simulation process dependencies. 

2.2. Program development environments 

Until now, the representation of programs, i.e. programming languages, has 

been designed with a purely static medium in mind, the printed paper. 

Defining a language as a sequence of symbols has certain advantages: The 

syntax can easily be described by a grammar, representing a simple and well- 

defined interface to a compiler. The static, one-dimensional view is also the 

basis for current program verification techniques. In daily life, however, these 

languages are used in a very dynamic fashion, as the representation of 



structures that are created, inspected, modified, executed, and in general 

thought about in many more interesting ways than the program text can 

suggest. As a result of this, development environments have been created 

that in various ways 'support' the process of program development. These 

environments are rarely very well integrated in the language definition, and 

conceptually they lag considerably behind the state-of-the-art of programming 

languages. 

One of the founding ideas of our work is that, rather than treating a 

programming language as a sacred cow that we have to make practically 

usable by building development tools on top of, we should recognize the 

language as an interactive tool in itself and design it according to the needs of 

the programmer, not the compiler or the theoretician. Starting with the 

interactive computer system as our medium instead of printed text gives us 

new, powerful capabilities to express programs. This has been demonstrated 

by many applications and development environments, for which a dynamic 

sequence of graphical images has already become a common medium. Let us 

take a look at some recent work on program development environments and 

how it applies to the design of our programming system. 



2.2.1. Syntax-directed editing 

Since most programming languages are represented as text, it is common to 

manipulate programs via a standard text editor. Programs are not simply 

text, though, but compositions of computational structures, and it would seem 

appropriate to build editing tools that embody this view. Syntax-directed 

82, Morris 81, Teitelbaum editors [Medina-Mora 82, Meyrowitz 

81a, Teitelbaum 81b] use the syntactical definition of a programming 

language (or other context-free grammar) to operate on the syntactical 

categories of the language as editing units instead of each individual character 

in the text. Some systems actually represent the program as a parse tree and 

invoke a pretty-printer ('unparser') to display it on the terminal. 

Syntax-directed editing has several advantages: First, it reduces the typing 

effort to enter programs and minimizes typing errors, since the language 

tokens are usually available through a few keystrokes. Second, it ensures that 

the program is always syntactically correct, eliminating many frustrating 

passes through the compiler, especially for programmers who are not very 

familiar with the language. This also speeds up the learning process for such 

users. Third, it allows for "intelligent' editing operations that seem natural 

to the programmer, like deletion of a compound statement or a search 

bounded by the enclosing procedure. Fourth, combined with modern 



programming languages, it encourages a well-structured, top-down 

development style by enforcing the view of programs as hierarchical 

compositions of language constructs. Fifth, it provides an interface for 

debugging tools. Some systems generate code along with the parsed 

statements and allow the program to be executed (statement by statement, 

procedure by procedure, if desired) through the editor. This provides a 

unified interface that both shortens development turnaround time and 

conceptually simplifies the development process. 

The main problem with syntax-oriented editors for text-based languages 

concerns the granularity of syntax checking. To modify a program, we often 

have to take it through incorrect intermediate states, and we are really not 

interested in the system getting upset about these. Some editors allow only 

changes in terms of syntactical entities, but this leads to serious inflexibility 

(for example, to change a conditional into a loop, the whole conditional has to 

be deleted, even if the loop may use the same boolean expression and body). 

Other systems flag incorrect statements in a fairly quiet manner (like inverse 

video) until the modification is completed. 

There are two reasons for the granularity problem: First, these systems are 

really of a hybrid nature. We represent programs as sequences of characters, 

but we still want to manipulate them as program structures. Thus, it is 



possible to introduce errors that are even below the token level, i.e. we can 

create structures that are not even legal programs. Second, the structure of 

languages is not designed with interactive modification in mind. Program 

maintenance has been studied at the macroscopic level (program structuring, 

information hiding, integration of programming tools), but how language 

structure influences changes at the microscopic level has not been a primary 

issue. 

In the system presented in this work, we have attempted to avoid these 

problems. Since we design the system directly with the graphical, interactive 

medium in mind, we can pick representations that correspond atomically to 

the language concepts. Further, we have chosen a computational model, 

functional programming, that has a simplicity and orthogonality that relieves 

us from some of the editing problems mentioned above. 

2.2.2. Style of interaction 

One of the few technological advances during the past years that seems to be 

able to contribute more than a simple capacity increase is the introduction of 

cheap high-resolution bit-mapped displays. After two decades of character- 

based display terminals, which really didn't take us very far from their 

'teletype' ancestors, we suddenly have virtually unlimited possibilities to 

express things graphically. Now a rapid sequence of two-dimensional images 



is our medium. There are of course many directions in which we could 

develop this potential. There already exists one paradigm that has become 

fairly popular and is utilized by several manufacturers. This is the pictorial 

design pioneered at Xerox PARC through the Smalltalk system [Goldberg 83]. 

Although the Smalltalk language is itself fairly conventional when syntax is 

concerned, the development environment builds upon a few ideas that have 

also inspired other systems [Teitelman 77, Williams 83]: 

Menus. The inclusion of the mouse as input device makes moving a cursor 

around on the screen extremely fast and picking entries from menus very 

convenient. Combined with rapid screen updates to reflect the menu choices, 

this provides interaction that is simple enough for users not familiar with the 

system, yet fast enough for expert users. The primary benefit of menus 

versus stated commands is that a menu does not require the user to memorize 

specific syntax. Another interesting aspect is that a menu-based system 

makes system exploration quite easy. This is very hard in a command-based 

system, although it is to some extent possible to anticipate what commands 

users will attempt [Wixon 83]. The use of menus has been subject to research 

in itself. [Norman 83] investigates the tradeoff between information conveyed 

by menus and the time it takes to display them. Fast screen updates makes 

large menus with much associated information feasible. The size of menus is 



still limited by the human capacity to scan images and recognize entities. 

[Warman 81] gives 5-7 as the maximum number of items we easily can 

distinguish among. This means that the depth of the menu hierarchy in large 

systems can become a problem (especially if the user has to move level by 

level out of the system again), if we do not employ special techniques, like 

displaying a large menu as several submenus of related options. 

Windows. The high resolution of modern bitmapped displays makes it 

feasible to display a large amount of information on the screen 

simultaneously. This has spawned the idea of showing several more or less 

independent activities in separate windows on the screen at the same time. 

The reason why this is so appealing to most users is that most of the tasks we 

perform, whether we use a computer or not, are composed of several sub- 

tasks, and most humans tend to shift their attention from one sub-task to 

another in a fairly random fashion. The window technique thus makes the 

screen look like a familiar desktop, with windows corresponding to sub-tasks 

spread around the screen. If moving the mouse from one window to the next 

is all it takes to shift from one sub-task to another, the shift of attention is 

made virtually effortless, supporting people's work habits. 

Modelessness. A related issue that has been brought up in this context 

[Tesler 81] is the issue of modelessness. Many systems have rigid ‘modes’



that take care of different parts of the system's function. If it is (1) awkward 

to go from one mode to another (cf. moving from editing mode to compiling 

mode in most program development systems), or (2) the same commands 

mean different things in the different modes (or, equivalently, different 

commands must be given to obtain similar results), we say that the system 

has a rigid mode structure. Since users like to switch their attention between 

different aspects of a task, a rigid mode structure both hampers this shifting 

of attention and also causes confusion with respect to command usage. (A 

case in point for the latter occurs when looking at incoming mail through one 

of our text editors at USC. The regular commands for moving about in 

buffers cannot be used; the mail system requires its own.) The window 

technique combined with mouse input can be used to break down the mode 

barriers, since mode switching can occur simply by moving the mouse. 

System transparency. Computers are powerful tools for information 

processing, but, just as most Americans find it more convenient to grab a 

hamburger with their hands instead of using knife and fork, there are 

significant differences in computer system tool convenience, too. When the 

computer is used for manipulating some object, we are really interested in 

dealing with the object as directly as possible. The computer should not get 

in the way, it should be transparent. 



Two components of system transparency can be identified [MacDonald 

82, Tesler 83]. When the user initiates a command, immediate feedback 

causes changes on the display reflecting the result of the command as soon as 

the command is executed. This principle is violated by most operating system 

interfaces. Who hasn't often issued a separate command to examine the print 

queue just to make sure that a print command succeeded? The popularity of 

screen-oriented editors also illustrates the importance of command 

confirmation. Without immediate feedback, the user must remember much of 

the system state and must make conjectures as to how it changes, without 

getting this confirmed until later. 

The second component of system transparency is the 

What-You-See-is-What-You-Get paradigm (and What-You-Get-is-What-You- 

See; there should be a one-to-one correspondence). For example, with a 

graphics screen, a text formatter can directly display the final layout of the 

document instead of being based on cryptic commands for font changes, 

subscripts, special characters, etc. If the user does not see the end result 

directly, he/she must perform a mental translation. This translation cannot 

always be correct, and this can lead to much irritation and waste of time. 

Mixed text and graphics. With bitmapped displays (and dot-matrix or 

laser printers), technology seems finally to have caught up with the artificial 



boundary that has existed for centuries (since Gutenberg, actually) between 

the ease of handling textual and pictorial information. It is an indication of 

the utility of pictorial representation that after all this time our books and 

documents still contain at fair amount of figures. We can of course only 

speculate as to what effect several decades of convenient creation and 

distribution of pictures will have on information material around us, but it is 

clear that this is a significant component of the new interactive medium about 

to be explored. 

The components just described together make up a coherent interaction 

language that is becoming adopted by an increasing number of system 

developers. This acceptance may indicate that the style has certain inherent 

positive features, most of which were outlined above, and it may also be a 

first small step towards the user interface standardization advocated by 

[Newman 80]. We will follow this style whenever it will serve us, but we will 

feel free to invent our own designs when we need to. This will help both 

users of our system and ourselves to focus attention and effort on the 

genuinely new aspects of the system. 



2.2.3. Integrated environments 

Most computing environments, be they intended for office automation, 

program development, or other purposes, consist of several software tools 

each designed to aid in one more or less well-defined sub-task within the 

overall goal of the system. To accomplish a task, the user has to make use of 

several such tools, passing some object (a form, a set of data, a program) from 

tool to tool. Thus, even for simple programming environments it is clear that 

several benefits can accrue from some kind of integration of the tools that the 

environment offers, and this becomes increasingly clear for larger 

environments that can provide dozens of tools, e.g. for the requirement 

specification, design, development, verification and maintenance of programs 

[Howden 82, Sandewall 78]. The integration can occur at two levels: 

Internal integration refers to integration in the communication between the 

various components of the system. This usually means that the components 

communicate via some standard data format. In the primitive case this 

format is simply a file (as in UNIX), but by deciding on a format with more 

structure, more interesting information can be exchanged between tools. In 

essence, each tool knows more about what the others are doing, so that it can 

respond more intelligently to the results of the use of other tools. For 

example, a program editor can use the diagnostics from a compiler to position 

the cursor at the offending token of a parsed program. 



The tools may not only share data format, they may share data themselves in 

the form of a database containing descriptions of the current state of the 

system. In this way all information about any component is available to all 

tools, thereby maximizing the utility of the information, and at the same time 

centralizing it, making sure all information is consistent. This concept is used 

in design databases [Williamson 84] that keep track of system components 

and their interrelationships during all phases of a design project. 

External integration refers to how the system components appear to the user, 

i.e. the user interface. Different command syntax for different components 

can only confuse the user and make the system hard to learn. A well-defined, 

unified user interface helps making rapid context (tool) switching painless (cf. 

our discussion of modelessness above), and it can encourage users to use parts 

of the system they otherwise would not attempt to learn. Integration of user 

interfaces also forces serious thinking about standardization. In the end this 

may lead to fairly standard user interfaces across machines, so that moving 

from one system to another can be fairly easy, i.e. we obtain integration even 

between different systems [Newman 80]. 

The system developed here will consist of a few distinct tools, and since we 

design them simultaneously, we can assure that they will benefit from proper 

integration, both internal and external. 



2.2.4. Program animation 

The aspects of program development considered so far concern only the static 

representation of programs. The dynamic behavior of a program during its 

execution is usually hidden from our view, but it is nevertheless this aspect 

that is of primary concern to the programmer. Several attempts have been 

made at visualizing this internal behavior as an aid during program 

development. 

There are basically two approaches to program animation. The simplest 

technique is to use a graphics library and insert calls to image drawing 

routines whenever the state of the program changes in an interesting way. 

This in essence makes the programmer write two programs in parallel, one for 

the simulation and one for the graphics, and there is of course no guarantee 

that the two will agree with each other. Sometimes, however, we may only 

be interested in the graphics part, as for the production of animated films. 

[Brown 84], [Langlois 84], and [Magnenat-Thalmann 84] describe some recent 

contributions to this method. 

In the other approach, hooks are inserted into the low-level run-time software. 

Procedures that display various parts of the program state as a graphical side- 

effect are then attached, so that the progress of a program can be monitored 

without any modification to the program itself. In simulation, for example, 



the routines for process scheduling can be modified in this manner, allowing 

the simulationist to follow the life of processes moving between queues (see 

e.g. [Birtwistle 84, Dewar 84]). This provides an insight into the behavior of 

the simulation model that trace: dumps of scheduling actions can never 

accomplish. Such a model visualization aid is another instance of the What- 

You-See-is-What-You-Get principle decribed earlier. A similar technique can 

be used when developing distributed software. [Unger 84] describes such a 

system that intercepts all message passing between processes and displays the 

action graphically. 

These systems display a few rather high-level structures of programs, and 

benefit from it in that non-trivial semantics can be contained in the pictures 

(e.g., a queue can be drawn to look like a queue). It seems to be harder to 

draw interesting pictures automatically for user-defined structures made up of 

general components. [Dionne 78] describes a LISP system that automatically 

draws S-expressions as they are evaluated. Except for simple list operations, 

these pictures tend to get unwieldy and perhaps even obscure the high-level 

semantics of the function being executed. 

Common to these latter systems is that they attempt to automatically display 

the progress of programs without gathering more than a very narrow slice of 

their behavior hierarchy. If we want to examine the programs at precisely 



this level, they can be very helpful, but if we want to get a more detailed or 

overall view, they do not provide much assistance. Also, we see that there is 

no graphical communication between the programmer and the display 

functions. The programs are represented in the usual textual way, and it is 

up to the display software to invent good graphical metaphors. In our 

system, we will support the display of structures at all levels of abstraction, 

and it is one of our basic principles to let the programmer decide what 

pictures should represent these structures. 

Related to program animation is program monitoring. Here, techniques are 

developed for selectively displaying parts of the program state, and also for 

collecting statistics about the program behavior [Plattner 81]. Debugging, 

performance evaluation, and optimization are the application areas. Unlike 

animation, monitoring usually employs a separate, independent monitoring 

process that can extract the desired information from the program in 

operation. The final display is therefore not only the result of executing the 

program itself through a layer of animation utilities, but the output can be 

processed further by the monitor program. Such facilites undoubtedly have 

enormous practical value, but we will not attempt to develop this issue fully 

in connection with our own design. 



2.2.5. Programming-in-the-large 

DeRemer and Kron, in their landmark paper [DeRemer 76], argued 

convincingly for the recognition of programming-in-the-large as a distinct 

activity, different from the conventional programming-in-the-small, and 

requiring its own language tools. Such a utility has four major functions: It 

serves as a management tool for organizing and breaking down the various 

parts of the system by its manager. It is a design tool for actually describing 

the structure of the system in terms of its components and their 

interconnections. It serves as a precise communication tool enabling 

individuals working on the project to interchange information in a precise 

manner. Lastly, it is a useful documentation tool for automatically 

generating formal descriptions of the system. 

While such a two-tiered approach seems natural within a traditional language 

environment, the situation can look different for systems based on other 

languages. For a purely functional language, for example, the programming 

modules correspond to functions, the building blocks of the language itself. 

Further, these modules/functions only communicate via data passed from one 

function to another. Hence, there is apparently no need for a special module 

interconnection language [Keller 81]. In practice, there is still a need for 

grouping related functions together into modules and controlling resource 

usage by some kind of scoping mechanism. 



As we have hinted at earlier, we have based our system on functional 

programming, so we avoid these issues to some degree. Since programming- 

in-the-large is not central to our thesis, and to limit the scope of our work, we 

will not address the problems in detail, but only indicate possible solutions 

that may fit our framework. 

2.2.6. Programming-by-example 

Programming-by-example refers to techniques whereby a program, formulated 

in terms of its behavior on one or more sets of example data, can then be 

synthesized by a support system into a general program. Ideally, the 

programmer should only need to specify pairs of corresponding input and 

output data, and the system should find the ‘natural’ extension to the 

general case. This is very hard to do, since the generalization can always be 

done in many directions. This approach therefore requires that the search 

space be limited in some way, for example by restricting the application area 

or the computational power of programs generated. 

Query-by-Example [Zloof 77] provides programming-by-example in the 

restricted context of database operations. Here, example data satisfying a 

query are set up by the user, and the system responds by extracting all data 

satisfying the same query. That is, in contrast to regular programming, 

where a program is first created, then applied to a set of data at the user’s 



request, the program created in QBE is automatically applied to all available 

data immediately. QBE has been extended to include common office tasks 

(word and data processing, report writing, graphics and electronic mail) [Zloof 

82]. 

The problem can also be simplified by limiting the data structure. [Summers 

77] describes techniques for inducing transformations of LISP list structures 

from input and output lists. 

Another approach to making programming-by-example feasible is to supply 

traces of intermediate states along with the desired input and output 

[Biermann 76]. Alternatively, the desired function can be illustrated by 

example computation. In its simplest form, the programmer performs a 

complete computation on example data, much like programming of pocket 

calculators. This gives only a description of a straight computation, and it is 

difficult to include information about conditionals and loops. [Halbert 

81] describes such a system, enhanced with a loop construct, but without 

conditionals. More advanced systems can discover the structure of 

conditionals and loops from several example computation traces (e.g. [Bauer 

79]), combined with common knowledge about programming concepts. 

Ultimately, artificial intelligence techniques will have to be employed to 

mimic the kind of generalizations humans make. 



Programming-by-example has mostly been motivated by the need to let 

people from outside the computer profession create their own programs. 

Programming today is too difficult for non-specialists for several reasons. 

One major obstacle is the extent of intricate detail that needs to be mastered. 

Programming is also very abstract, since computational structures must be 

formulated and generalized in the programmer's mind before they can be 

encoded in a program. Furthermore, this encoding only indirectly describes 

the program functionality, without giving the programmer any clear 

indication about how it will perform on given data. Programming-by- 

example attempts to alleviate this by letting the system take care of 

extraneous detail and allowing the programmer to concentrate on specific, 

concrete examples. These are goals that coincide with our own, so we will 

explore example-oriented programming as part of our work. 

2.3. CAD/CAM 

Computer-Aided Design and Manufacture is one of the oldest application 

areas for interactive computer graphics, and is perhaps the area that 

currently exhibits the closest parallels to interactive program development. 

Indeed, we might well view program development as computer-aided design of 

programs. The similarities are particularly clear in CAD of VLSI circuits, a 

discipline which more and more closely resembles its software counterpart 



[Maling 81, Shrobe 83]. Both are creative activities, concerning the design 

and implementation of non-trivial, large systems of hierarchical structure, and 

they encounter many of the same problems when development tools are to be 

built. Hence, much of the research on CAD systems applies to program 

development systems as well: 

Interaction language: The language of VLSI itself (circuit components) 

may be different from the language of programming, but the language of 

interaction can be the same, and faces the same challenges. The system 

should display as much information as possible to maximize the user’s control 

of what the state of the system is. But this information has to be displayed in 

such a form that it is easily extracted by the user, and so that only necessary 

information is actually extracted. The information transfer rate must be 

increased in the other direction too: By designing intuitive representations of 

concepts, and formulating powerful, yet precise tools, a naturalness of 

expression can be achieved that greatly simplifies the user's design task. 

Certain general principles, such as minimizing memorization, providing 

immediate feedback on all user actions, and reducing the risk for 

misinterpretation and confusion, further enhances the quality of the 

interaction. We will say more about these issues in the section on human- 

computer interaction. 



System management: Another aspect of CAD systems is the facilities for 

support of large systems. Viewing and simulating hierarchical designs at 

different levels; integrating modules developed by different people; providing 

libraries of components that can be reused; keeping track of interdependencies 

among modules; version control; all these are valuable mechanisms we 

recognize from discussions on software development environments. 

Testing: In a VLSI circuit development system, a powerful simulator is just 

as important as the tools for putting the design together in the first place, 

since this allows the chip to be tested before a costly implementation is 

attempted. For programs, the computer itself usually serves as a simulator. 

It is nevertheless desirable to monitor and control programs more carefully 

than what can be achieved through a simple execution of the programs. 

Hence, there is a need for versatile debugging tools for programming, too. 

Interactive, graphically supported testing of VLSI designs is fast, since 

immediate feedback is provided and modifications can be made as soon as 

errors are found. With good probing and display tools it makes it easier to 

locate problems by actually showing what is going on internally. It supports a 

structured approach to modifications, since smaller entities usually can be 

isolated and tested, and subsequently reinserted in the main structure. It can 

reduce introduction of new errors by keeping track of dependencies between 



parts and automatically checking for design constraints. These are all well- 

known merits of interactive programming environments with symbolic 

debuggers. 

There are, of course, differences too. Pictorial diagrams of electronic designs 

have been in use since long before the first VLSI CAD system was built, and 

they continue to be a useful representation of the circuits. At the lowest level 

of design, the physical layout of the chip provides another natural pictorial 

representation. Thus, in CAD (for VLSI and also for most other uses of CAD) 

the pictures are given and we are only faced with the task of utilizing them in 

a useful way. In programming, as we shall see, it is mostly up to the 

programmer to decide what kind of pictures to show. The underlying reason 

for this is that programs can model anything in the real world, whereas CAD 

systems concern a specific domain. 

Another characteristic of CAD systems is the large number of constraints on 

the designs. This is related to the fact that a VLSI circuit must be viewed 

from several angles: Timing and control, dataflow, schematic (logic diagram), 

and physical layout are different aspects of the same design imposing different 

constraints. Physical alignment, wirability, timing dependencies, noise, power 

consumption and various parameter optimizations are some of the factors that 

must be considered, and CAD systems should contain components that do 



corresponding analyses [Renfors 83, Revett 83]. While it is necessary to 

control most of these factors to obtain a working chip, we usually have at 

most overall performance demands in programming, related to the single 

dominating (functional) view of programs. Our task is in this respect simpler, 

although we should add that for very large systems more sophisticated tools 

are needed. 

Our task is ultimately also made simpler by being able to test in the real 

environment. For example, an electronic circuit contains much real 

concurrency, and however good simulators are built, they cannot provide 

more than approximations to the real behavior. This can cause problems in 

unfortunate cases, since small inaccuracies in concurrency can cause 

substantial differences in behavior. In general, VLSI testing really means 

simulation, which means that we have to stop somewhere down the hierarchy 

of components and base the tests on simplified models. 

2.4. Office information systems 

Information systems based on networked microcomputer workstations are 

rapidly being introduced in the office. Their chief function is to store, 

retrieve, manipulate and control documents within a distributed environment 

to aid in document preparation, information management, and decision 

making [Ellis 80]. Thus, unlike traditional business data processing, these 



systems are highly interactive in nature. There are a number of issues related 

to the human-computer interface that are of interest to us here: 

Programming languages: The dynamic nature of modern offices, with 

changing conditions and requirements causing changes in the office worker's 

routines, makes it necessary to allow the end user of the OIS to program 

his/her own applications to some degree. The traditional, centralized data 

processing department approach is too slow, since computer professionals are 

scarce and communication between users and programmers is difficult and 

unreliable; it is too expensive, since the scarcity of specialists causes salaries to 

skyrocket; and it is not flexible enough to take care of individual users’ needs 

[McNurlin 81a, McNurlin 81b, McNurlin 82]. There is also a growing 

realization of the importance of how the individual feels about his/her work. 

The ability for each office worker to redesign job procedures according to 

taste is therefore becoming increasingly important. For end-user 

programming to be feasible, we need very high level languages that are simple 

enough for fairly unskilled (in the computer domain) people to use, yet 

powerful enough to allow non-trivial applications to be generated. These 

languages can be domain specific, since it is known within what area they will 

be used. For the same reason, computational power can to some degree be 

sacrificed, making the systems easier to use and allowing for better support in 



terms of consistency and other checking. In our system, generality precludes 

these simplifications, making a well-engineered human-computer interface all 

the more important. 

Programming-by-example: One way simplicity of use has been obtained 

in OIS while at the same time keeping a fair amount of computational power 

is by exploiting examples [Zloof 82] (cf. sect. 2.2.6). By specifying the desired 

operations on the resulting document itself, the gap between an abstract 

description of the computation and the resulting operations is obliterated, 

significantly reducing the complexity of the programming process. This is 

exactly what we are doing in our system here, when we draw data instead of 

abstract control structures and let the user directly show how the data are to 

be transformed by the program. 

Graphics: Graphics has of course been recognized within the business 

environment as a powerful means to convey information. But there have also 

been experiments on using graphics in the information management process 

itself. [Herot 80a, Herot 80b] explore a system that displays a database on a 

plane surface and allows the user to browse through the data displayed, 

zooming in on entities of interest. This extremely fast and convenient way to 

search the database makes it feasible to look for things without knowing 

much about them. Even if the user knows exactly what he/she is looking for, 



it may be easier just to zoom in on it graphically than specify a lengthy 

predicate. Thus, the pictorial representation lowers the memorization 

requirements and provides a more convenient channel for communicating with 

the computer. Moreover, spatial positions and shapes of icons can convey 

information that is hard to store symbolically. These factors are central to 

our work as well. 

Concrete models: For OIS systems to work well, it is important that the 

conceptual model embodied in the user interface closely resembles the ‘real 

life‘ model the user has of the organization in which he/she works and how 

his/her job fits into it. This makes the medium (the computer) transparent as 

a tool to support already well-known concepts. In the same way, the 

implementation of the tools can be made transparent by always displaying as 

much as possible of the current state of the application. This is the ‘Visual 

Programming‘ paradigm [MacDonald 82] (or, ‘What-You-See-is-What-You- 

Get’), as embodied in screen editors and many form-based data entry 

systems. Query-by-Example [Zloof 77] also follows this spirit by showing 

directly the resulting data. In our programming system, this principle applies 

both to the representation of programs and to their display during execution. 



2.5. Human-computer interaction 

The field of Human-Computer Interaction (or Human Factors, or Ergonomics) 

has gained substantial popularity in the past few years, and there is now a 

steadily growing body of significant research in the area [Bo 82, Carey 

82, Moran 81, Sondheimer 82]. The main reason for this interest is of course 

the proliferation of inexpensive microcomputers. When a large part of the 

population spends its workday interacting with a computer, the design of 

human-computer interfaces becomes extremely important for the well-being of 

many people. The increased capabilities of these computers (fast processors, 

large memories, graphics) heighten the need for sound principles to guide in 

system development, and at the same time represent an opportunity to 

implement the findings being made in this research area. 

The problem of human-computer interface design is attacked from several 

angles. From the theoretical end, concepts are borrowed from other fields, 

e.g. cognitive psychology and linguistics, to form a model of the user. These 

models can be at a very low level (like the keystroke model [Card 80]) or at a 

high level (like activity organization [Bannon 83]) in the task hierarchy. 

Analytical models are also attempted to capture user behavior in a 

mathematical framework (e.g. [Norman 83], which studies tradeoffs in user 

satisfaction). Good models of the user can make it possible to predict user 

reactions to new interfaces and deduce practical design rules. 



Another class. of efforts attempt to formalize the human-computer dialogue 

via some specification technique (e.g. [Jacob 83, Kieras 83, Lawson 78, Roach 

83]). This is useful if we want to apply automatic checking of the dialogue, 

for example for security against misuse of systems, or for dialogue evaluation 

by expert systems. It also is the basis for rapid prototyping techniques. Since

interface design is still very much an art the ability to quickly build and 

explore prototypes is extremely valuable. 

From the empirical end, a number of interesting experiments have been 

conducted to determine the effect of various factors on user satisfaction and 

productivity. Issues like screen layout [Teitelbaum 83], menu size [Warman 

81], mouse design [Price 83], color use [Frome 83], and reponse time [Butler 

83] have been investigated to determine the effects on the user at a fairly 

microscopic level. (e.g. response latency and error rates). More global 

performance aspects of interface design, like learning time [Gomez 83], the 

time needed to perform a certain task, or the effect on how the user organizes 

his/her work [Murrell 83], have also been studied. New forms of interaction 

are investigated [Krueger 83, Lippman 81, Negroponte 81], and existing 

systems are evaluated [Bewley 83, Yavelberg 82]. 

Several aspects of computer programming have also been studied from a 

human-computer interaction point of view [Sheil 81]. For example, [Sime 



77] empirically establishes that an if-then-else nested program really is easier 

to understand than a similar goto based one. [Miara 83] investigates program 

indentation and finds that moderately indented programs (2-4 spaces) are 

optimal. [Shneiderman 77] finds no indication that flowcharts really help in 

the program development process. How computer programming is learned is 

studied by [Mayer 81]. Mayer conjectures that novices support their 

reasoning with a concrete model of the computer, and largely confirms this 

with experiments. This suggests that programming environments should 

provide such a model directly. A common result quoted in several reports is 

that expert users are relatively immune to interface and language design, 

whereas novices and casual users are easily affected [Moran 81]. Thus it is 

important to determine the audience when developing programming systems. 

The most directly applicable result of the research on human-computer 

interaction is a growing catalog of design philosophies [Nakatani 83], 

principles [Gould 83, Jones 78, Mooers 83, Morse 79], methods [Kelley 

83, Topmiller 78, Wixon 83], and rules of thumb. We are still far from being 

able to guarantee the quality of a new interface, but these guidelines already 

supply the designer with concrete aids in the design process. 

In this work we are concerned with exploring new ways to represent computer 

programs, i.e. we are interested in the human-computer interface aspect of 



programming concepts. The research outlined above is therefore of great 

interest to us here and we will refer back to specific results as we go along. 

2.6. Other systems 

Diagrams have long been used to display the global structure of programs, 

since this can usually be shown as a simple static picture of objects and their 

relationships. Most software projects employ at least some informal way to 

express the overall design pictorially, usually as a graph of modules connected 

by control and data references. [deBalbine 78] describes a system that 

automatically generates Modular Tree Representations of programs, supplying 

the system developers with correctly updated overviews at all times. The 

TELL system described by Hebalkar and Zilles [Hebalkar 79] is an interactive 

editing facility that uses a graphics display to provide development support of 

systems as hierarchical block diagrams. The system supplies icons and arrows 

for standard code and data modules and control and data flow among them, 

but the user can also define his/her own. At the bottom diagram level, 

conventional program code is entered. The system maintains a database that 

is amenable to various kinds of system analysis. None of these systems 

address the topic of our main interest, though, viz. the issue of representing 

graphically the detailed program itself and its dynamic behavior. 

Frei, Weller and Williams at IBM, San Jose [Frei 78], acknowledge the fact 



that programming does not have a ‘natural’ graphical representation, unlike 

most other areas. In their search for a useful representation, they end up 

with structured charts (Nassi-Shneiderman diagrams; cf. fig. 2-1) and claim 

that a graphical programming system based on these will support structured, 

top-down program development by visually exhibiting program structure and 

enforcing page-sized modules. A pictorial representation will also more 

clearly exhibit the meaning of programs and result in better coding, improved 

productivity and better documentation. [Ng 79] describes an implementation 

of the system. 

Structured charts still go a very short way towards pictorially displaying 

programs. They really are little more than 'structured' flowcharts, giving 

graphical representations to control structures and leaving expressions, 

assignments, procedure calls, and data, parameter and type descriptions still 

to be written in some regular programming language (in this case PL/ 1). 

Keller and Yen of the University of Utah have built a graphical programming 

system based on functional programming (FGL) [Keller 81]. Since there is a 

direct correspondence between the functional model and the dataflow model, 

they can display their programs as graphs consisting of nodes representing 

function applications and arcs corresponding to the data flow between 

functions (fig. 2-8). A functional graph model has several advantages: A 



program is a composition of functions, so the control and data flows are the 

same, thereby obviating the multiple views necessary in more conventional 

models. This simplifies graphical representation significantly. A flow-graph 

brings out clearly any concurrency that may be obtained and errors are likely 

to stand out well. Function graphs have a well-defined semantics, so they can 

be executed by an underlying system. The simple functional structure 

encourages modular design and can be used at all levels of system description, 

making a separate module interconnection language unnecessary (cf. sect. 

2.2.5). 

  

Figure 2-8: Conditional in FGL. 

We think, though, that a graph-based design will be awkward to use in 

practice, since graphs take a lot of space and can get messy if they are non- 

trivial. More importantly, a graph does not convey any semantic information 



beyond node and are names and connectivity, so we still have not exploited 

the graphical medium very far. The use of a functional base is interesting, 

though, and we have found it a useful foundation for our work as well. 

FADT is both a design technique and programming tool being developed at 

the University of Trondheim [Amble 83]. It is based on an extended, 

formalized version of flowcharts that map into PROLOG-like code (fig. 2-9). 

The criticism given for graph-based languages above applies to this system as 

well: The pictures can get unwieldy and they cannot represent in a graphical 

way more than the simple data dependence aspect of programs. 

Cardelli [Cardelli 83] makes a rather elegant effort to design a language for 

manipulation of two-dimensional data structures, like boxes with letters and 

pictures (fig. 2-10). He acknowledges that a conventional sequential language 

can never express spatial objects and relations in a natural way, and defines a 

two-dimensional, functional language with pictorial operators and function 

lay-outs. In addition to the usual integers, booleans, etc., his primitive data 

types include a simple box for creation of two-dimensional structures. 

Cardelli’s system seems to work quite well for the graphical data structures it 

supports, like lists. But since the pictures displayed are generated by the 

system, there is no way for the programmer to attach semantically interesting 



Figure 2-9: FADT function. 

figures to the programs, i.e. one can still not get an immediate feeling for 

what the program does just by taking a brief look at it. 

The Program Visualization (PV) environment being built at the Computer 

Corporation of America [Kramlich 83] is primarily devoted to the dynamic 

visualization of programs. The system presents an integrated view of code 

and data structures during program execution, allowing the programmer to 



  

Figure 2-10: A list splitting routine in Cardelli’s notation. 

monitor directly both the control sequence and the data modifications (fig. 

2-11). The user can further create graphical pictures and link them to code 

and data, establishing high-level icons that can be used during the execution 

monitoring. The level of abstraction shown can be chosen by the 

programmer, ranging from top-level drawings of the whole system being 

developed to the bottom-level language code. 

Since the PV system addresses program simulation, the authors have 

recognized the importance of displaying data structures. The data-oriented 

view is one of the main principles of our work. The PV system does not, 

however, attempt to use the displayed data for more than program 



  

Figure 2-11: Program execution in the PV environment. 

illustration. The program itself is displayed along with it as conventional 

text, and the progress of its execution shown by highlighting program 

statements. 

The PegaSys system developed at SRI [Moriconi 84] also does not represent 

the programs themselves in terms of pictures, but it is an attempt at using 

pictures formally for program design and documentation (fig. 2-12). Pictures 

are mapped into calculus formulae, and the system can check that the 

composition of picture elements is consistent. The system also supports a 

refinement methodology for the visual specifications. 

PegaSys combines graphics with formal logic quite interestingly, and 

represents programs as a hierarchy of precise, yet fairly meaningful pictures. 

The plans for extending the system with animation also seem exciting. The 



Figure 2-12: Visual specification hierarchy in PegaSys. 

amount of graphical semantics the user can contribute is still limited, though, 

and the final refinement step, down to the actual program code, is missing. 

The PECAN system developed by Reiss at Brown University [Reiss 

84] utilizes high-resolution graphics to show a large amount of information 

during program development (fig. 2-13). The system can present a collection 

of all the traditional views of a program at the same time on the screen: 

program listing, data type schema, parse tree, symbol table, flow graph, 



execution stack, and input-output dialogue. Having instant access to all this 

information can give the programmer a good view of what is going on in well- 

known programming terms, and the system is indeed a powerful debugger. 

This work does not, however, attempt to contribute any novel paradigm that 

utilizes new technology to improve program representation. 

Figure 2-13: PECAN execution display. 

The OMEGA system being built by Powell and Linton at UC Berkeley 

[Powell 83] is the system that in goals and design comes closest to our own. 

With OMEGA, the programmer will be able to interactively build programs 



by pointing to graphical structures and move them around on the screen (fig 

2-14). Multiple windows can be used to show different parts of the program 

and view the database of already defined entities. Central to this work has 

been the idea of separation of the objects stored by the system from their 

representation. Thus, the user can choose between several ways to display 

objects, and the input of objects can be done in a syntax-free manner by 

pointing to graphical icons. These icons ('pictographs') are visual 

abstractions of the code or data they represent. The actual details have to be 

specified in a textual form close to regular programming languages. The 

system also features a multi-threaded database that will enable the 

programmer to associate program components along several lines, e.g. same 

type, used in same module, executed after each other, etc. 

While the designers of OMEGA recognize the virtues of graphical abstraction, 

they are still tied to a conventional view of programming. This prevents 

them from fully exploiting pictures; the old textual form is still there. It is 

also not clear whether the separation of objects from their representation 

actually helps the user. One of our slogans is ‘make the abstract concrete‘, 

meaning that the more concrete the objects seen on the screen are, the 

simpler will it be for the user to think about and manipulate them. We have 

therefore chosen to tie the objects and their representation together as closely 

as possible. 



Figure 2-14: OMEGA program display. 

2.7. Summary 

We have surveyed recent highlights in several related fields. Many different 

ideas are incorporated into new, powerful program development environments 

to make computer programming more manageable and available to a wider 

audience. Many of the same techniques are found in similar design tools, like 

CAD systems, and in major application areas like office information systems. 

The principles that explain why some systems are better to use than others 

are investigated within the field of human-computer interaction. 

From this survey we can discern the present situation: 



Even though pictures are used in several systems, their nature has not 

been explored in its own right to determine their potentials and 

limitations. 

Still, there is a very clear trend toward an increased use of pictures, but 

without much guidance for the system designers. This trend is more 

based on available technology than clear human interface 

considerations. 

Nevertheless, some important notions, like immediate feedback and see- 

what-you-get, have surfaced. Once identified, they have a substantial 

influence on designers hungry for guidelines. 

It is therefore essential that the use of pictures in several contexts be 

investigated as a topic of its own. This work is an attempt at relating 

pictures to programming more clearly than has been done in the past. We 

also observe that 

Both empirical research on programming interfaces and the wide 

distribution of microcomputers dictate that the main target for new 

developments in interface design should be directed at naive and casual 

users. These are the users that need and are most influenced by better 

interfaces. 



Hence, we will focus our work on the kind of programming done by this user 

group. Finally, both our own and other researchers’ experience indicate that 

The present (von Neumann) computer model is not particularly suitable, 

neither for teaching simple programming, nor as a basis for graphical 

displays. In contrast, simpler models, like the functional programming 

model, promise great advantages in both respects. 

With these observations in mind, we can proceed to our own design. 



Chapter Three 

The form of pictures in programming 

3.1. General guidelines 

In the introduction we argued that there seem to exist many good reasons for 

expressing computer programs in a more pictorial fashion, and we will now 

try to identify more precisely what form these pictures should have, and what 

they should depict. 

Simpler structures than computer programs have long had established 

graphical forms. For numbers, for example, the unit is identified with a 

certain amount of ink. By combining ink amounts corresponding to the 

numbers to form rods, pies, etc., we obtain a representation that makes it 

easy to compare the numbers. For mathematical functions of one argument 

the line is the metaphor that allows us to talk in terms of intersection, angles, 

curvature, etc., instead of more abstract concepts. 

What real-world metaphors can fit programming? To get a feeling for how 

immense our initial search space is, let us amuse ourselves with a few 

possibilities. Is a program like a road with intersections and forks where we 



have to make decisions depending on our current errand, and with roadside 

inns where we can spend computation time or, if we are careless, completely 

overflow our stack? Or shall we abolish the ‘meta-view‘ and, instead of 

seeing the program from the sky, put the programmer inside the program by 

presenting a view of a tunnel he/she can drive through? At each intersection 

one might have to throw dice or make guesses to introduce some of the 

challenge, fantasy and curiosity found in computer games [Malone 81]. 

Perhaps we should rather present programs as physical, three-dimensional 

objects that we can turn around and view from different angles and in 

different light so as to reveal the various facets of their structure. Can we 

present a program as a play with actors and objects on a stage? Before our 

imagination runs astray, let us start discussing the topic more systematically. 

It is useful to start the discussion by examining how we use pictures in 

programming today. The only forms of graphical effect we can see in 

program listings are indentation to reveal block structure and delimiting lines 

inserted as comments. But even though the finished product is an encoding in 

some textual form, the process of creating it is usually sprinkled with 

illustrations of various kinds. When we think about an algorithm, or explain 

it to someone, what kind of images do we support our explanation with? We 

draw pictures of the data structures, and show how the algorithm works by 



pointing to the data, drawing arrows and filling in example numbers. For 

instance, when explaining the Quicksort algorithm, we draw an array and 

show how it is split by choosing some example numbers and indicating by 

arrows the swapping of elements. Only when the algorithm is understood do 

we take the pains to formulate it in a programming language, a form that 

very precisely defines the algorithm, but which is not very suitable for 

thinking about it. 

There are a few points worth noticing here. First, the pictures that we draw 

when we have complete freedom to illustrate exactly the aspects of programs 

that we are interested in, and in exactly the way we like, are probably closer 

to the internal, mental images we talked about in the introduction. If we 

tried to base our pictorial programming system on this kind of pictures, we 

would considerably narrow the concept-representation gap that is presently 

making programming such an arduous task. Second, we notice that by far 

the most commonly depicted structure is data. If the pictures we like to put 

up on the blackboard are of our data, doesn’t it make sense to attempt to 

focus a pictorial programming system around graphical data descriptions, too? 

Third, as soon as we have to deal with non-trivial data structures, we have a 

strong tendency to support our explanation with examples rather than 

general pictures. Fourth, the pictures are, if not fully dynamic, at least 



semi-dynamic, in that we constantly modify them during the explanation, 

and show different aspects of the pictures at different times. That they are 

not fully dynamic is probably an implication of limitations in the medium 

(paper or blackboard) rather than a result of preference. Fifth, the pictures 

by themselves usually do not contain enough information to document the 

whole algorithm. The hand-waving and spoken words that go with them 

complement them. 

With these indications of what we are looking for in a good way to display 

programs, let us explore some options. 

3.1.1. What aspects of programs shall we show? 

Primary aspects 

There are several aspects to a computer program that we may want to depict 

graphically in some way. The most important ones are: 

Control flow 

Data flow 

Data structure 



Topology 

It is not immediately obvious which one of these, or which combination of 

them, best lends itself to graphical display, and which is best for the 

programmer to work with in a pictorial way. Pictures allow us to show all 

interesting aspects of programs simultaneously. But although it is true that 

the more we see the easier it will become to discover relationships and spot 

errors, it would be useful to find out whether there is one aspect that the 

presentation and the programmer can focus on, letting the other views build 

upon that aspect. Let us examine each of the components in turn. 

Control flow. In chapter 2 we saw several examples of control flow display, 

including flow charts, structured charts, state diagrams, and Petri nets. 

Indeed, graph or network type diagrams have been the predominant way to 

describe programs pictorially. We also gave in chapter 2 the primary benefits 

and drawbacks of such illustrations: If kept simple, they can provide a very 

clear view of how control proceeds, including a lucid presentation of 

parallelism. They are also a good base for animation. On the negative side, 

they easily tend to get unstructured and confusing. Moreover, they represent 

only the control aspect of the programs. It seems to be hard to include other 

important aspects, like data structure, in the diagrams. 



Data flow. The only use of data flow diagrams has been for the dataflow 

model of computation. Since in this model data and control flow are 

identical, what we said about control flow diagrams applies equally well here. 

Data structure. Curiously, there is not much work on formal or 

standardized ways to display data structures. Even though it is the data that 

often contain the graphically most interesting structures in a program, their 

picture usually remains hidden and must be illustrated manually by the 

programmer. There are some possible reasons for this. First, the data can be 

rather complex and its content and shape change dynamically. Sophisticated 

display technology is required to maintain updated pictures, and it is not 

always obvious which parts of a large structure to display. A hierarchical 

schema of code or data can always be displayed neatly one level/branch at a 

time, but the instances of the schema can easily get unwieldy. Second, we 

tend to think about our data at many levels of abstraction, and the display 

should reflect this. For example, a graph may be depicted as a network of 

nodes and arcs in one place, but as a connection matrix in another. This is of 

course what data type abstraction is all about. However, the translation 

between the different views is not trivial to do since it involves graphically 

interpreting the mapping between specification and representation of the 

abstraction, a mapping which is usually only implicitly defined via a collection 

of operators. 



It is still the case that a major part of the program illustrations we make are 

of data structures. In fact, programming often starts by defining the data 

structures and then proceeds by building the procedures around them 

( [Sandewall 78], p 44). With the development of abstract data types and 

object-oriented programming the emphasis on data as semantically interesting 

pictures around which the algorithm revolves has only increased. It therefore 

seems that work on data-oriented program display is an important, needed 

contribution. 

Topology. Diagrams of program structure can only capture the static 

interrelationships within a program. The more detailed a level of 

programming we are considering, the more interested we get in the dynamic 

behavior. Topological diagrams can therefore be useful as a background 

framework, but the diagrams central to programming-in-the-small must focus 

on other aspects. 

If we now look back at what we said earlier about the nature of pictures and 

how this relates to programming, it is not hard to discover several points 

leading in the direction of data structure display. The mental images we use 

and the drawings we make to support our programming are mostly concerned 



with data. This is because we like to work with concrete concepts. Data are 

concrete, they have a layout in the computer, and they are usually associated 

with the real world in a much more direct way than control structures. 

Control does not have a natural picture, it is an abstract concept that we at 

most can help make somewhat more concrete by attaching abstract pictures 

to it. Finally, even though programs are dynamic objects, it is hard to 

manipulate something which is constantly in motion, so we would like to find 

a representation that is at least semi-static. Data are the most static aspect 

of programming-in-the-small, so by basing our system on data display, we can 

provide a user interface consisting primarily of static pictures without 

artificially binding the dynamic aspects of programs to static images. Control 

and data flow are then best animated on these pictures instead of being the 

subject of static pictures by themselves. 

Despite the difficulties associated with data structure display described above, 

we will therefore here develop a system for programming in pictures based on 

the display of data structures. 

Secondary aspects 

Orthogonally to the primary aspects of programs discussed above, there are 

several more aspects that we usually do not see displayed anywhere, but that 



a pictorial programming system can let us examine in detail, thereby 

providing important information about a program. 

Correctness. The main obstacle when searching for errors in a program is 

simply that we cannot see what the program does in detail. We have to rely 

on what we think it does, but this is not always correct. A program debugger 

can assist us simply by allowing us to observe more of the program in action. 

A pictorial system showing how the data is modified and how control 

proceeds can similarly make program operation more lucid and thereby 

simplify correction. 

Performance. An animated display where the time spent in each program 

component always is in the same proportion to the total program time can 

give valuable information on where most of the execution time is spent. A 

good display of how data expands and contracts likewise shows space 

requirements. These measures have traditionally been very hard to observe, 

but a good pictorial system can make them a self-evident part of a 

programmer's knowledge of a program, simplifying code optimization. 

Parallelism. A performance measure that is very important in certain kinds 

of programming is parallelism. The best way to give the programmer an idea 

of the parallelism obtained by his/her design is probably to show the program 

in operation, highlighting the multiple concurrent actions graphically. 



Typing. The type of a program object is usually a feature which cannot be 

deduced simply by looking at it (e.g. looking at a variable name 1), although it 

is an important attribute that can cause irritating errors if misjudged. In real 

life, we are usually able to tell the difference between apples and oranges, and 

if they are packed in cartons, these are usually clearly marked. Similarly, our 

objects should be marked in programming, and with a pictorial system we are 

able to do this, for example through the use of shapes or colors. 

Abstraction. We would like our programming system to advocate a view of 

the software as a hierarchical structure of neat abstractions. In conventional 

languages, we can syntactically 'support' this view by enforcing certain 

access rights within the program text. But the programmer, who is not 

supposed to think too much about the implementation of an abstraction when 

he/she uses it can probably see it just by flipping the page! If, on the other 

hand, we integrate the language with the programming system, we can unify 

the access path and the abstraction path, and let the system embody the 

desired view rather than merely support it. A pictorial system is the best 

vehicle for this, since it imposes no constraints on the graphical interpretation 

of program navigation. For example, we can obtain the underlying 

implementation of a piece of abstract data by expanding its picture with a 

kind of zoom-effect. 

1 In retrospect, FORTRAN’s variable naming convention was perhaps not such a bad idea. 



3.1.2. How shall we display it? 

Having decided on data structures as the basis for program display, we now 

make several more comments about how we can exploit the features of 

pictures in this connection. 

Multi-dimensionality. There are several aspects to programs, and the 

optimum display would probably show all of these at once and also how they 

are interrelated. This is extremely hard to do in one picture without making 

the result more confusing than illuminating, but the multi-dimensionality of 

pictures can help us to some extent here. For the best way to display several 

things at once without having them interfere with each other is to show each 

aspect along its own dimension, orthogonally to the others. With pictures, we 

have two dimensions to begin with, but with the proper display techniques 

and technology we can achieve several more. The matching of program 

aspects to dimensions is an important design issue in that the decisions we 

make can influence how the user thinks about programming. Lacking 

stronger guidelines than that we should try to minimize surprises and support 

people's preconceptions [Jones 78], we have based our design on the following, 

which we find intuitively appealing: 

We are used to laying out data graphically in the plane, so we need 

these two dimensions to show good illustrations of data. Since these are 



the most obvious dimensions of plane pictures, this is also in keeping 

with our intent to focus the display on the data structures. 

Control and data flow are dynamic aspects, so the natural dimension to 

project these along is time. This means that we will promote animation 

to an integral part of program display, instead of just leaving it as a 

debugging aid. To make it easy to compose and modify programs we 

probably have to give some static representation of the control and data 

flow, but the way to study these aspects should still be by animation. 

This leaves the third spatial dimension, which we can conveniently 

utilize for hierarchy (topology), both for data and program components. 

One way to achieve this is to show essentially two-dimensional pictures 

of programs and data, and use a zoom-effect to ‘open up‘ more 

detailed structure underneath or to pan back for an overview. 

With a color display, we actually have a fifth dimension, which we can 

suitably use for data types or other category information. It is 

interesting to compare this to how colors are used in other fields to 

reveal attributes that are otherwise not visible, without changing any 

other attributes (e.g. red/blue marks on hot/cold water taps, color 

codes on gas bottles, painted curbs as parking restrictions). 



Real world semantics. We talked earlier about how pictures are rich in 

metaphorical content, in that they tend to make connections to the real 

world, and how this represents both an opportunity and an obstacle when we 

want to use pictures to express programs. On one hand, the pictures we use 

should give associations about the high-level application domain to aid in 

program understanding by reducing the level of abstraction. On the other 

hand, it is difficult to attach too much new semantics to shapes, since most 

pictures already have a large amount of meaning associated with them and it 

is hard to restrict the interpretation. The key seems to be to utilize the 

semantics that is already there and be careful about illustrating new concepts 

with more than trivial, abstract figures. 

Data structures model objects in the real world, so this is the part that 

naturally lends itself to illustration by real world pictures. Control now 

becomes actions that we perform on these real world illustrations, but actions 

that often do not have real world counterparts and therefore are best 

represented as abstract pictures or animation sequences. So we introduce new 

things that can be done with familiar pictures rather than new interesting 

pictures. By letting the programmer draw arbitrary pictures of data and 

using these in a framework determined by the system, we allow the human to 

attach real world semantics precisely where the interface to the real world is 



the strongest. We then rely on the automated system to present pictures of 

the abstract computational structures that are the only aspects the machine 

really can know about.

This provides a reasonable division of labor, but it also ensures that the 

programmer's efforts are minimized. Only the aspects of the program that 

belong outside the machine world have to be illustrated by the programmer. 

The system can further aid the user by reusing pictures as much as possible, 

e.g. by using the picture of a data type to describe all objects of that type. 

Tying the user-defined data pictures together in a standard framework also 

has the advantage of rendering the program easily readable by those other 

than the program author. 

Other graphical programming systems have invariably failed to include more 

than an abstract, uninteresting set of pictures to describe part of a program. 

They have therefore been unable to profit from much of the strength of the 

graphical medium. 

Use of real world semantics gets more appropriate the higher the level of 

abstraction we consider. At the lowest level this benefit from pictures is 

therefore reduced,2 but the freedom to view data as any graphical shape still 

remains. 

2 Just as Smalltalk's object-message view gets artificial at the primitive level. 



No names. Pictures remove most needs for naming, and we must exploit 

this to simplify programming. This means that all objects the programmer 

may wish to refer to must be identifiable by pointing. A name is a very 

compact, convenient way to refer to an object that is not present. Thus, 

names may still exist as an option to be used to retrieve objects temporarily

out of view, but no subtask must rely on the existence of unique names. In 

fact, names should be a mere attribute, not necessarily unique. Objects with 

the same name can still be distinguished by their structure, and selected by 

pointing. 

Animation. We have already established the connection between control 

and data flow, and animation. While data provide the static base for our 

program displays, control and data flow are the dynamic aspects that should 

be shown essentially by animation on the data display. We are now in a 

position to expand in more detail on exactly how picture sequences can be 

used to illustrate the dynamics of programs. 

Program execution. In a data-based display environment, the simplest way to 

visualize program execution is to repeatedly update the data pictures as 

changes occur. This gives a very good understanding of the effect of the 

program, but it does not say much about how control and data flow between 

different parts of the program, i.e. about the anatomy of the program. In a 



flowchart or dataflow graph we can follow the flows through a picture of the 

program structure, but this is at the cost of completely losing the picture of 

the corresponding data. We can, however, invert the situation: By 

surrounding the data display with the context in which it is currently being 

processed, we get complete animation of how and why control and data flow 

through the program, and at the same time a full and undisturbed display of 

how the data change. By context we here mean an indication as to which 

procedure is currently in control of the data.3 This can be just a simple name 

or icon hinting at the procedure in question. It can also be a more involved 

display showing by means of arrows and other figure elements how the 

procedure actually works, something akin to our style of explaining programs 

on the blackboard. 

This solution gives us a fairly local view of the flows that may not be 

adequate to obtain a global overview of the program. The third dimension 

comes to our rescue, however, and in a fairly elegant way. We mentioned 

above that we would use depth to show hierarchical structure of data and 

programs. If we pan back from a view showing the data and its immediate 

context, what do we get? The data will in a sense get smaller and smaller, 

3 In a concurrent programming environment we automatically get a graphical constraint 
that only one process can access shared data at a time, since the data can only be 
surrounded by one context. 



until only their top level structure is visible. Then, the context will get larger 

and larger, but this means that we show more and more of the program 

structure and less and less of the data. On the other hand, if we zoom in, we 

will see more details of the data, but only a small piece of context. We have 

therefore obtained a unification of data and program structure display, planar 

pictures tied together via movement along the depth axis. Since control and 

data flows are easily animated along program structure, we can use this 

solution to show all aspects of programs in a unified way, combining the views 

by carefully exploiting the various dimensions of pictures. 

Note that a similar dual display would not be feasible if based on a flowchart 

or dataflow graph type display. First, we would violate our observation that 

the data are the centerpiece around which the rest of the program revolves. 

Also, unless we disconnect the display of data from the program structure and 

show it in a separate window, we are forced to animate pieces of data as 

control and data flow proceed, thereby animating the most static aspect of 

the program and leaving the dynamic aspects as a static picture. Second, 

while control follows a structured tour through program pieces in a manner 

that is usually easy to follow without a global display of the complete 

program, data accesses are usually much more random in nature, jumping 

back and forth between different sub-structures in a fashion that would make 

a solution showing only a partial data display very hard to follow. 



The above solution, unifying the most interesting aspects of a program in one 

multi-dimensional picture centered around the display of data, has an obvious 

alternative. Why can't we show the various aspects of a program as separate 

illustrations in different windows on the same screen? This would disentangle 

the pictures and give us full freedom to look at the aspect that is of interest 

at the moment. One problem with this solution is precisely its strength: It 

separates the aspects, leaving it up to the viewer to find out how they are 

interconnected, even though it is these interrelationships that make up the 

soul of the program. 

The most important reason that we will not pursue this solution here is more 

philosophical, however. We are trying to make programming more accessible 

by making it more concrete. If we show a program as several different 

pictures, we fail to bring the object we are working on completely out in the 

open. We merely provide a few peepholes into a reality we cannot grasp in 

its entirety. The ‘program proper‘, whatever it is, remains hidden and we 

only see its traces. If, on the other hand, we manage to unify the views into 

one picture, we have created an artificial object that becomes real. The 

program is one object that we can ‘touch and feel‘ and manipulate and think 

about as  an object appearing before our eyes. 

Animated writing. While program execution is the most obvious target for 



animation, we must not forget the other ways in which we interact with 

programs. Program writing and modification are especially demanding with 

respect to the insight required, so these are areas where proper system 

support can be very helpful. 

Since a program executes dynamically, we can argue that we should also 

create it by showing the computer in the same dynamic way how each piece 

of data is computed. In the light of what we have developed above, this 

means that we would like to specify how the program works by manipulating 

example data much in the same way we do when we explain a program on the 

blackboard. This has some implications: 

The data we use for program specification are examples. This is at 

least true for non-trivial data structures where we cannot simply 

represent a piece of data as a simple box or icon, but have to work on 

an instance of a more complex structure. 

To specify the program, we would like to interact with the system by 

pointing to the structures of interest and stating in a simple, direct way 

(e.g. by menu selection) the operations to be performed on them. This 

would replace the hand-waving that accompanies pictures of data on the 

blackboard. 



The program itself will thus not be 'written' in the usual sense. 

Rather, the specification actions will have to be represented by 

graphical constructs imposed on the data pictures, e.g. like arcs 

connecting the pieces of data that are involved in a computation. 

We refer to this style of programming as animated writing because, rather 

than giving a static specification, the programmer does the program as a 

sequence of actions. If example data are displayed, we might even see the 

effect of the program piece immediately on the example data. The style is a 

direct consequence of our previous decisions about animated data displays, 

and is an important part of a coherent approach to programming in pictures. 

Reading by execution. Since we cannot appreciate a program fully without 

observing its dynamic behavior, executing the program should be part of any 

reading effort. To get an overall impression of what the program does, we 

could watch its execution in its entirety. However, when we look at the 

program in detail, we are usually not interested in observing the effect of the 

whole program. Each part of the program has its own dynamic attributes, so 

we would like to be able to execute selectively the piece we are inspecting. 

This implies a few points: 

As for writing, example data should be available when reading. These 

could be created by the reader or supplied by the system. 



The effort associated with triggering the execution of a piece of program 

must be minimized. Remember that all attributes of the program 

should ideally be equally easily observable. This means that a trivial 

action, like pointing, is all that should be necessary to invoke the 

execution.

Since the central part of the display is the data, these are the objects 

that it is most natural to point at in this connection. This means that 

the execution will be data-oriented, in that it will show how a certain 

piece of data is computed or how it is used to compute other data. 

By reading by execution we mean a style of program appreciation in which 

the reader can look at the various pieces of a program and by ‘touching’ 

them can actually see them in operation. Only through such an interface can 

all aspects of the program be easily observed. What distinguishes this from 

simple program animation is the locality. Reading by execution means that 

any program piece can be picked up and looked at and executed in a purely 

local context. We also note that, since reading is the inverse of writing, we 

can expect to see much the same pictures as those we created when specifying 

the program. That is, the graphical structures we used to show how the data 

got connected can be used here, too, to indicate how data are obtained. 



3.1.3. Summary of program display issues 

In the introduction we investigated pictures in general as they compare to 

text, and we have here shown how their characteristics can benefit computer 

programming. Our main observations are: 

The random access, rich language, and high transfer rate of pictures 

make them well suited for an interaction-intensive task like 

programming. 

The concreteness of pictures allows us to reduce the abstractness of 

programming and make it simpler and more accessible to non-experts. 

Pictures are windows into the real world and this can be utilized to put 

more interesting semantics into the program representation. 

Pictures should be dynamic to capture the execution aspect of 

programs. 

Pictures obviate the need for indirect references through names. 

The many dimensions of pictures can be utilized to unify many aspects 

of a program into one view. 



Pictures present a rich medium for aesthetic exploration. 

By looking at these characteristics, and at how people like to illustrate their 

explanation of programs, we have arrived at a design based on: 

Data-oriented pictures. 

Multi-dimensional, unified view manipulated by pointing. 

Free form pictures input by the programmer in an abstract framework 

supplied by the system. 

Animation-based program reading and writing. 

3.2. Key decisions 

For the idea of programming in pictures to have any practical value, we have 

to construct programming systems that implement the concept. When we 

build a concrete system, we are forced to make choices among a large number 

of possible incarnations of the general ideas we have developed. In doing so, 

we make it difficult to determine whether the merits of the finished system 

stem from the principle of programming in pictures, or whether we just have 

made clever implementation choices. We would really have to construct a 

whole family of systems, implemented along different lines, to be able to 



factor out the effects of implementation. There are two levels of 

implementation choices that have to be made: 

1. We have to choose a computational model. The model is the basis for 

the underlying semantics of the programming system. It also determines 

all the higher-level concepts that the user will form about the system. 

Thus, the choice of computational model is an important one. If the 

underlying model is not simple and well-defined, and does not promote 

concepts that are compatible with the ideas of programming in pictures, 

the benefits of these ideas will never materialize. 

2. Having found a suitable computational model, we have to decide on its 

representation. This is the focus of our work here. The preceding 

section formulated guidelines for how we can benefit by using pictures 

in programming, and we now have to engineer a specific design that 

violates as few as these principles as possible. The search space is vast, 

but with the basis developed in the previous section, it will not be as 

vast as we may think. 

This research includes the implementation of a simple system for 

programming in pictures, hereafter referred to as the PiP system. As 

indicated above, we will not be able to draw firm conclusions from this, but 



we nevertheless see it as a very valuable first step in experimenting with the 

practicality of programming in pictures. This section justifies the key 

decisions we had to make regarding the computational model and the 

graphical representation. The next chapters describe in detail the particular 

implementation we have undertaken. 

3.3. The computational model 

The imperative von Neumann computer model is overwhelmingly the most 

used computer model today, whether we consider hardware implementations 

or research work. It was therefore quite natural for us to first investigate this 

model as a basis for programming in pictures. Our initial attempts were not 

successful, however, and it did not take long before we realized that this 

model is not very well suited for the purpose. 

There are several important reasons why this model fails: First, it is a rather 

messy world, with many intricate concepts and mechanisms that would 

clutter the otherwise simple idea of programming in pictures. Second, the 

visibility rules in most von Neumann programming languages do not easily 

lend themselves to pictorial representation. The amount of data visible from 

one place in the code is usually large.4 Third, the strict sequentiality of the 

4 This is of course a direct consequence of the von Neumann model's centerpiece, the large, 
complex memory state. 



imperative model is not compatible with pictures, where there is usually no 

sequential order imposed on various picture elements visible in a two- 

dimensional plane. 

Indeed, it seems quite fitting that we should encounter problems in 

attempting to force a novel user interface on an old-fashioned model. 

Choosing a new model also has the advantage of forcing even experienced 

programmers to take a whole new look at what programming is about, rather 

than just mapping the pictures to their predefined view of this activity. 

We therefore set out to locate another existing model, more suited to the task. 

Backus’ Functional Programming model was finally chosen as the best 

candidate. This model is fully described in [Backus 78], and we have included 

a brief overview in appendix A. 

The salient features of FP for our purpose can be summed up as follows: 

Simplicity. ‘Things should be as simple as possible, but not simpler‘, goes 

Einstein’s famous quotation. In this connection, we would like our model to 

be simple for several reasons. First, we do not want issues irrelevant to 

programming in pictures to disturb our discussion. Second, we have said that 

we are targeting relatively naive or casual users, since these are the people 



most likely to benefit from this work. Third, one of the principles we build 

upon is that the display should explicitly show all the aspects of the system 

that the user may want to think about. This is to enable thinking in terms of 

concrete metaphors and to identify the model with the display. The 

complexity of the model therefore becomes critical since a complicated model 

will easily clutter the display with too much detail. The F P model is simple, 

but at the same time it is an established, powerful computational model. 

Unified data and control flows. One way FP achieves its simplicity is by 

using data flow as the basis for control. This is of particular importance here, 

since it relieves us of the need to display two separate aspects of programs 

that are usually rather difficult to combine in one view. 

No global data. It can be difficult to keep a display of all the data that are 

accessible from a given point in an ALGOL-like language, both because of the 

amount and because of its dynamic variation. In FP, each function can only 

access one input and one output data structure, again simplifying the display. 

It is also good for the reading-by-execution technique, since only local data 

need be filled in. 

No implied sequentiality. As we said above, pictures do not, unlike text, 

imply sequence. FP builds functions as algebraic expressions. The FP 



concept closest to sequence is functional composition, but, in contrast to the 

sequence of von Neumann languages, it is explicitly stated. It is also used in a 

more coarsely grained manner. This makes it much easier to handle 

graphically. FP functions are also often evaluated in parallel, making the 

program structure less linear and more graphically interesting than von 

Neumann programs. 

Few names. FP does not name its function arguments. In fact, data objects 

are in general nameless, making FP very suitable for an environment based 

on pointing at known objects rather than naming them. This lack of names 

comes from the locality of data. Functions are still referred to by name since 

they are selected from a global library. 

No parameter substitution. Parameter substitution is a powerful, but 

intricate mechanism, hard to describe both mathematically and graphically. 

FP is one of the very few models that does not use parameter substitution, 

and it therefore again simplifies our display. 

Small program components. FP encourages splitting up a program into 

many, very small components, since the overhead in setting up a function 

definition is minimal. This means that the components we display are usually 

very simple, both benefiting program understanding and display clarity. 



In addition, the simple, almost trivial, FP data structures, and the single 

function argument, contribute to a simple interface that allows us to focus on 

issues regarding pictures in programming, like building high-level data 

semantics into the pictures. FP has almost no syntax as defined by Backus, 

so we are not constrained in any way to design our pictorial interface. Lastly, 

the precise algebraic definition of FP ensures a coherent underlying model 

that is straightforward to implement and simple to learn. If it is easy to 

handle mathematically, it is probably easy to think about, too. 

Other programming models, such as pure LISP and logic programming, do 

not contribute anything that FP does not. Indeed, the parameter passing 

mechanism of lambda calculus and the conversational style of logic 

programming, with a large database of rules and facts, make them less suited 

for our task than FP. 

One may of course ask why we should pick an existing model at all. If the 

pictures we present to the user are so central, couldn’t we start by designing a 

graphical, algorithmic world and then come up with a computational model 

for it? Besides causing us extra work, there are reasons why this would really 

be to put the cart before the horse. We do not think that we can 

anthropomorphize computers completely. Computers are inherently new. 

Rather, we are investigating a way to make the burden of metaphorically 



extending people's knowledge to cover computers less formidable. Thus, the 

abstract computational model is always there, and we might as well pick a 

good one. If we want a good total solution, finding the model before the 

pictures instead of the other way around limits the search space considerably. 

3.4. Graphical representation 

The first section of this chapter laid down the guidelines for how we shall 

utilize pictures in programming. Having chosen our computational model, we 

can now decide how the concepts of the model map into concrete pictures. 

3.4.1. Data layout 

As suggested in the previous section, we will lay out the data objects in the 

plane. But rather than supplying predefined formats for data, we will leave it 

to the programmer to design the data representation using a free format 

picture editor. This way the user can include as much semantic information 

about the application domain as desired. Since data are hierarchical 

structures, we will use the depth axis to show levels of detail through a zoom 

mechanism. So the recursive sequences handled by FP are translated into 

hierarchical free form diagrams with figure elements representing each 

element of the sequence. 

These pictures of data are to be used as descriptions of objects operated on by 



functions. In drawing these pictures, we really define data types, since a 

function works for a whole class of objects rather than just one specific 

object. Drawing data types is also much more economical than drawing data 

objects, since the drawings can be reused for each object. Moreover, much of 

the semantic information that we associate with an object really belongs to its 

type description rather than to its value. If we want to express object-specific 

information graphically, we should include a separate data type picture whose 

objects take graphical values. 

We have therefore included a typing mechanism in our system. It should be 

clear that the main reason for this is to allow the programmer to capture 

semantic knowledge about the application domain and express it directly in 

the program. In addition, we can enjoy all the traditional benefits that a 

typing mechanism gives us (increased reliability and more efficient correction 

through automated compatibility checking; clearer structure by forcing the 

programmer to classify data and operations). We will comment further on 

our typing scheme in a later chapter. 

The equipment at our disposal for this project does not include a color 

display. We can therefore not utilize color to show object types, so this has 

to be indicated by other means. In our system, a simple zoom operation will 

reveal the structure of a piece of data and thereby also its type. 



3.4.2. Function layout 

A function is next defined by animated writing on a picture of its data. In 

FP, a function maps an input data object to an output object. It is therefore 

convenient to display a picture of the function's input data and a picture of 

its output data and then show by means of pointing actions how the output is 

obtained from the input. Similarly, reading by execution will show how the 

input is combined to yield the output. The pictures shown are those of the 

data types in question, and a context of arrows and predefined operators 

showing how the data are used, i.e. the data flow. 

As we saw earlier in this chapter, this gives a local view of the function, 

suitable for fairly low-level programming where each part of the data 

structure is involved in small computations. We also saw how we could use 

the depth dimension to unify views of data and program structure. Our 

system implements this idea by providing a second level of program 

composition. If we pan back from the data-oriented view just described, the 

next higher level of abstraction will be an iconic picture of the function 

defined, rather than a picture of data (we had reached the top level of data 

abstraction anyway). Other function icons can then be brought into the 

picture and combined in various ways. This is where the FP functional 

forms enter the game. These are precisely the operators we have for 



combining functions. The function icons are free form drawings allowing the 

programmer to attach real world semantics to the functions as well as the 

data. 

Thus, we have a two-level system. At the low level we specify simple 

functions by animated writing on data. We refer to this level as object-level 

function editing since we work in terms of the data objects. At the high level 

we combine predefined functions into new ones via functional forms. We 

refer to this level as function-level editing since we work in terms of 

functions. The two levels visually unify data and function hierarchy along 

the depth axis, since the data structure can be inspected by zooming the data 

at the object level, and the function structure can be examined by panning 

back into the function level. 

These are the basic ideas on which we have built our implementation. The 

next chapters will describe in detail how it is actually done. 



Chapter Four 

A system for programming in pictures 

4.1. System overview 

The preceding chapter established the computational and graphical bases for 

our system, the PiP system. The implementation incorporates these ideas 

into a dialogue style that has much in common with contemporary menu, 

window, and mouse based systems. Our system is an interactive, graphically 

oriented computer programming system. That is, by drawing pictures on a 

terminal screen, pointing at the pictures and moving them around, the user 

can compose structures which the computer will translate and execute as 

programs. The system assumes a high-resolution bit-mapped graphics screen 

and a pointing device (like a mouse) for normal interaction, as well as an 

ordinary keyboard for entering names and numbers. 

Nothing but a live demonstration can fully describe all aspects of such a 

dynamic design, but there is nevertheless much that can be said via text and 

static pictures. The description that follows is the user's view, since this is 

what is of primary concern to us here. We will describe implementation 

issues only when they help to clarify matters. 



The system consists of four main tools, each designed to handle one kind of 

object that the user will have to manipulate. In FP, the center of attention is 

the function, so it is not surprising that one of these tools is dedicated to the 

creation, modification and execution of functions. We want to provide both 

object level and function level editing, so we have found it convenient to 

actually supply two tools for function manipulation, one for each editing level. 

We refer to these tools as the function editors. We decided to include a 

typing mechanism to reap the well-known benefits of type checking, but also 

as a facility for increasing the use of pictures. Building types is therefore an 

important activity requiring its own tool, the type editor. Both functions and 

types use pictures in their definitions, and we have to provide some means of 

creating these. This is a task that is completely orthogonal to any language 

construct, so we have included a separate picture editor for this purpose. 

For a multi-tool system like this to work smoothly in practice, we have to 

consider carefully how control and data are transferred among the 

components. In the PiP system, the tools can be ‘picked up‘ and ‘laid 

down‘ in any random sequence, i.e. any tool can be invoked from another. 

Furthermore, when reentering a tool after using another one, the situation is 

exactly as  when the tool was last exited. There is only one incarnation of 

each tool available. This configuration gives a very convenient and 



conceptually simple total system. The system consists of four ‘boxes’ that 

can be entered and exited, and there are no surprises (hidden actions) 

connected to the switching between tools. Each tool is available at the touch 

of a menu icon. 

The four tools produce functions, types and pictures, and can pass these 

among each other via a scratchpad that is accessible (and visible on the 

screen, of course) from all four tools. 

Notice that the system only provides editors, and that function execution is 

performed through the function editors. This is a result of our view that 

program behavior is just another program attribute that should be observable 

during editing just as easily as other attributes. 

Each tool provides a template, a simple frame structure, that the programmer 

can fill in. For the picture editor, the frame is a blank canvas that the user 

can draw any picture on. For the type editor, it is a blank field that the user 

can fill in with pictures (created via the picture editor) representing data 

elements. At the same time, type information is attached to each picture. 

For the object-level function editor, a double frame is provided, with one field 

to depict the input data and one for the output (using type pictures created 

via the type editor). For the function-level editor, built-in functional forms 

can be used to combine pictures representing functions within a frame. 



When the system is first invoked, the tool menu is shown (figure 4-1). The 

icons represent the following commands (bottom to top): exit system, picture 

editor, type editor, object level function editor, function level function editor, 

cancellation, and a help facility. When a tool is entered, the tool menu is still 

visible on the screen, so that any tool can be invoked at any stage of using 

another tool. It is not possible simply to exit a tool without entering another 

one at the same time. Selecting the exit icon on the tool menu will exit the 

whole system. 

4.2. Systemwide concepts 

4.2.1. Mouse use 

The system is based on a three-button mouse. The buttons have the 

following assignments: 

The left button is used for all picking and drawing. This button is 

henceforth referred to as the select button. Using one button for all 

normal functions reduces confusion and minimizes errors. Indeed, the 

system does not really need more than this one button, but since our 

computer is equipped with a three-button mouse, we have assigned some 

simple functions to the others as well. Only areas of the screen that are 

sensible to select are sensitive to the mouse. 



Figure 4-1: The toolmenu (legend added). 
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The sole purpose of the right button is window overlap control. Since 

the system can display several windows at the same time (for example, a 

function definition and the scratchpad), some windows can overlap 

others. All available windows will have at least some part visible, 

though, and by positioning the cursor on part of a window and clicking 

the right button, the top button, the window selected will be moved to 

the top of the stack of windows. Pushing the top button does not affect 

the state of the system; it is purely a display function and can be used 

at any time. 

The middle button is another display facility. If the cursor is positioned 

over a data structure that has an underlying, refined structure, pushing 

the middle button, the zoom button, will display the next refinement 

level of the data selected. The zoom button can be pushed again to 

reveal even deeper levels of hierarchy. By double-clicking the zoom 

button (two clicks within a short time), the reverse operation will be 

performed, panning back to the next higher level of hierarchy. As with 

the top button, the state of the system is not affected by this facility. 



4.2.2. Command parameter input 

We mentioned earlier how FP avoids parameter substitution, and how this 

helps simplify the graphical representation of functions. For the system 

command interaction, however, there is still a need for specifying parameters. 

For example, when issuing the command that deletes a type element, we have 

to indicate which element to delete. 

Parameter specification is a tricky aspect of human-computer interaction. 

The number of possible values that are acceptable is usually so large that a 

menu solution is unthinkable. Yet, there are usually so many constraints the 

parameter value has to meet that it is futile for the user simply to guess a 

format or sequence. In conventional systems, explanatory text is therefore 

often displayed to aid the user, triggered either by the user him/herself or by 

incorrect usage. 

How can we utilize the graphical medium to make parameter specification less 

painful? This question fits into what we have said earlier about the reduced 

significance of names, and the opportunity to show a larger portion of the 

system state on the screen than is commonly done. By the former, we mean 

that when an object is shown on the display, we can refer to it by pointing 

instead of through a name. This removes the obstacles regarding special 

name formats. By the latter, we want to indicate that by displaying the 



relevant parts of the system state, we reduce the number of choices 

significantly, making it easier to pick the right parameter values. In essence, 

we present the whole screen as a menu for parameter input. It is possible to 

keep a working set displayed in this manner, even if a full menu approach to 

parameter input usually is infeasible. 

Still, there are cases where more support is needed. For example, when more 

than one parameter is to be supplied, it may be obvious which parameters 

should be given, but not in which order (or if it matters at all). Also, some 

commands might be applicable only to a subset of the state displayed, and it 

may not be entirely clear to the user what the subset is. For these reasons, 

the parameter input style of our system is as follows: Whenever the system 

expects an input, a region of the screen is highlighted, corresponding to the 

region of possible inputs. Outside this region the pointing device will have no 

effect. When the parameter is given, the highlighting is turned off as a 

feedback. This is a graphical form of prompting. It gives more support than 

textual prompting, though, because it also presents a menu of possible values 

within the indicated region. 



4.2.3. The scratchpad 

We mentioned the scratchpad as the vehicle for communication between the 

editors. Since the display space after all is limited, and we would like to have 

ample space both on the scratchpad and in the editors, the scratchpad is 

displayed overlapping part of the editors. The system will attempt to find 

out when the scratchpad is needed, and will display it only when it is being 

used (e.g. when a new object is put on the pad). The user can easily hide the 

pad and bring it back again by using the top button, as explained above. The 

scratchpad has a clear ‘button’ in the upper right corner, i.e. a field that can 

be selected to clear its contents. 

4.2.4. Global commands 

In addition to the commands leading to the selection of an editor, there are a 

few commands visible on the main menu. 

Help facility. The system is easy to use and guides the user to a large 

extent, but if at any time the user does not know what to do, pushing 

the help icon will display a window with some explanation. Pushing the 

icon again will cause the help window to disappear, or, if needed, will 

page through the explanatory material. This facility does not affect the 

current state of the system. 



Command cancelling. By pushing the cancel icon, the current 

command is aborted, and the command state of the current editor is 

brought back to the same as when the editor is entered (main menu for 

the active tool). The state of the object being manipulated by the 

editor is not changed. 

4.3. Drawing pictures 

Figure 4-2 shows the screen layout of the picture editor. Briefly, the mouse is 

used to draw pictures on the big, blank canvas, and these pictures can be 

transferred to the scratchpad for use in other parts of the system. The 

version of the editor described here is fairly rudimentary, and it should be 

clear that any decent graphics editor can be substituted in its stead (see e.g. 

'MacPaint' described in [Williams 84]). 

When the cursor is moved over the canvas with the select button depressed, 

bits in its path will be painted. A picture is a fixed-size bitmap, much smaller 

than the big canvas shown, so each bit in the resulting map is shown as a 

black or white square several pixels wide. To help judge how the picture will 

look when it is used scaled-down in programs later, two small copies are 

shown in the lower right part of the screen. The small pictures are updated 

concurrently with the canvas, but one cannot draw on them directly. 



Figure 4-2: The picture editor. 



The menu on the left side of the screen supplies the following functionality: 

At the bottom of the menu, lines of different widths are shown. These are 

used for selecting drawing with 'brushes' of different sizes. 

The small black and white squares above the lines can be used to choose the 

paint color. Normally, the drawing is painted black on white, with white 

color used for erasure. The paint color is picked by ‘dipping’ the mouse in 

one of the colors (moving the cursor on top and clicking the select button). 

There is a menu showing a line and a circle. This allows drawing of straight 

lines and nice circles in an easy way. For the lines, the user specifies a 

starting point and then stretches the line to the end point. For the circle, a 

similar approach is used. The stretch effect lets the user see what is going on: 

After the first line point is specified, there is no doubt that the next thing to 

do is to click the mouse again over the end point. 

Clear colors all canvas bits white, and invert changes all white canvas bits 

into black, and vice versa. 

Finally, there is an operations menu that lets the user transfer pictures 

between the canvas and the scratchpad. Any picture currently shown on the 

scratchpad can be transferred to the canvas by selecting the from 



scratchpad function. The top of the scratchpad is always visible above the 

editor area, and the whole scratchpad can be brought out in front for 

inspection with the top button. The canvas is cleared before the new picture 

is brought in. Alternatively, the picture on the scratchpad can be added 

('ORed') bitwise to the current content of the canvas via the add 

scratchpad facility. To scratchpad transfers the current picture on the 

canvas to the scratchpad, for use in type and function definitions. 

This is all we really need to create pictures. There are, however, many other 

useful functions that we could think of to make drawing a lot easier. 

Examples include the ability to move picture elements around on the canvas, 

duplicating picture elements, built-in functions for more shapes, like boxes 

and ellipses, as well as various text fonts, and filling of regions with textures. 

4.4. Defining simple types 

The type editor provides the means for defining the layout of data to be 

executed by functions. The editor provides a template that the programmer 

can fill with various data components. The pictures of the components 

together make up a picture of the structure of the type. A picture icon can 

also be attached to the type to describe it as an entity when used as part of 

other entities. 



When entering the type editor we see, on the left side of the editor space, a 

comprehensive menu of functions used to build and modify types. 

4.4.1. The type template 

Figure 4-3 shows the type editor after entering it and selecting the create 

option from the main type editor menu. The display is dominated by a blank 

type template. The template contains a large area that can be filled with a 

pictorial description of the data. It also contains two smaller frames, one for 

the type name and one for the date the type was created. The template is 

automatically dated and has the default name "NewType" and no data 

elements. 

4.4.2. The library scroll window 

If we choose the search type command, a scroll-menu is displayed to the 

right of the editor menu (figure 4-4). The scroll-menu is a window into the 

library of already defined types, and by pointing at the bars at the top and 

bottom of it, we can scroll back and forth through the library. When we 

have found an item we are interested in, we can click the mouse on its name, 

and the type in question will be fetched from the library onto the scratchpad. 

The picture icon of the type will be displayed here. There can be several 

items on the scratchpad at the same time, and the pad space is managed 

automatically by the system. 



Figure 4-3: The type editor template. 



Figure 4-4: The scroll window. 



Notice that, even though we access the library items through names (they are 

out of view, so we need an indirect reference), we pick from a menu. This 

means that the names need not be unique. We can fetch all items with the 

same name to the scratchpad and then inspect their structure to determine 

which one we are interested in. 

4.4.3. Adding and manipulating elements 

The insert command is used for inserting new data elements in the type. 

After selecting the insert command, the element is inserted anywhere in the 

type template simply by positioning the cursor at an appropriate location in 

the template (marking the lower left corner of the element picture) and 

clicking the mouse again. Now the text "NoName", indicating an 

unspecified, empty element, will be displayed in the selected position. Next, 

we can attach a type to the element (type command). To do this an icon of 

the element type must be present on the scratchpad. The library search 

facility described above is used for fetching types to the pad. To type an 

element, the element is first selected within the type template, then the 

desired element type is picked on the scratchpad. The icon of the type is now 

displayed at the position of the element, at a default size. The system will 

highlight first the type template, then the scratchpad to indicate where mouse 

actions are expected next. 



The new element can subsequently be given its own identifying picture and 

name. A drawing created with the picture editor can be inserted as the 

pictorial icon of an element. In the picture editor, the drawing is moved to 

the scratchpad. Entering the type editor, the illustrate command transfers 

the drawing pointed at on the scratchpad to the element selected, and the 

picture is associated with that element. Similarly, if the frame of the type 

template is pointed at, the picture becomes the icon for the current type. 

The name command works like illustrate, but associates a name with the 

item pointed at instead of a picture. A prompt is displayed on the type 

element or in the name box of the type template, and the name can then be 

input on the keyboard. 

Figure 4-5 shows a data type intended for use in a simple physics experiment, 

where the students are to determine the density of various materials. There 

is one icon representing the volume measurement (obtained by submerging 

the object in question in water) and one for the weight. 

When an element has a picture associated with it, this picture overrides any 

other icon or name that might be used to stand for the element, such as the 

icon of its type. If the element does not have an icon, its name is displayed. 

If it does not have a name, its type icon is shown. If there is no type icon, the 



Figure 4-5. Creating a type. 



type name is given, defaulting to "NewType". Similar rules apply to types 

and functions. 

A type element created in the above described manner can hold a single value 

of some type. The sequence command will change an element into a 

sequence, of unspecified length, of values of its type. The icon of a sequence 

element is automatically framed by a bold line to indicate this. Selecting 

sequence twice on an element returns it to a simple element. One cannot 

make a sequence out of the whole type, but a type can of course contain a 

single sequence element. We will say more about structured data in chapter 

5. 

The attributes of a type element can now be summarized. They are the type, 

the name, the picture, the position and size, and the structure (sequence or 

simple data element). After an element is inserted, we might want to change 

its attributes. If we would like to change the type, name, picture, or 

structure, we simply use the respective commands again. 

If we want to change the position or size of the element, we can use the 

resize command. This will display a box that we can position and size as we 

please. The element picture will subsequently be resized to fit the new box. 

In this way, the user is completely free to compose a data layout consisting of 



several independent pictures, but that together may make up a coherent and 

comprehensive depiction of a data structure. We can even add a background 

illustration by including an empty element (of type 'NoType') whose picture 

fills the whole template. The data elements proper should be added on top of 

this background. For some applications this technique can give the program 

user important visual cues about the meaning of data (figure 4-6). 

Finally, the delete command deletes the element pointed at from the type 

template being edited. 

Notice how the task of building a new element is split up into its constituent 

subtasks. This simplifies thinking about the total task, and it also helps avoid 

stringent modes and forced subtask sequences. (It does not matter in what 

order we specify the element attributes.) We also see the uniformity of the 

commands: First create the element, then specify the attributes one by one. 

Since all types are built up from components, each being of some other type, 

there have to be some built-in primitive types. As in most other 

programming systems the PiP system provides the standard types boolean, 

integer, real, character, and string. Since the system is picture-oriented, it is 

also very natural to include a primitive type picture. Our system allows the 

definition of simple enumerated picture types, much like the enumerated 

types of e.g. Pascal. 



Figure 4-6: A type with background illustration. 



4.4.4. Saving and restoring 

The save command saves the current type permanently in the type library. 

If the type is already present in the library, the old version is deleted. Note 

that this equality is not determined by the type name, since the name is 

treated as any other attribute here. Rather, the system keeps track of the 

identity of types and functions, and only if an item is fetched from the library 

and then reentered is it considered to be ‘equal’ to an existing item. 

A type can be fetched from the library and modified, or just inspected, by 

first searching the library and then selecting the edit command. This 

command copies a type represented by its icon on the scratchpad into the 

type template. Any type already in the template is cleared. The to 

scratchpad command transfers a picture from a type to the scratchpad, so 

that it can be used to illustrate other types or functions as well. The type 

itself can not be transferred directly from the template to the scratchpad. 

This is done to force the programmer to save the type in the type library 

before starting to use it (e.g. in a function). The type can then easily be 

fetched from the library to the scratchpad by means of the search type 

command. 



4.5. Defining functions at the object level 

As we explained earlier, functions can be edited at two levels, the object level 

and the function level. There are actually two separate editors for this. 

At the object level, a simple function can be programmed in terms of 

operations on the constituents of its input and output data structures. The 

programming paradigm is that of displaying pictures of the function's input 

and output data, and specifying the function by showing how the output is 

computed from the input. This specification is performed as a sequence of 

mouse pointing actions. 

When entering the function editor we have, as for the other editors, a 

comprehensive menu of commands to build functions. 

4.5.1. The function template 

Figure 4-7 shows the display after the object level function editor has been 

entered and the create option has been selected. As with the other editors, 

we see a large, blank template. This template is split into two main parts, 

marked ‘input’ and ‘output’, respectively. In the input part we are to add 

a description of the function's input data structure, and correspondingly for 

the output part. Next, we can connect the input and the output by pointing 

actions that will describe the effect of the function. The template also has 



small windows for the function name and the date it was last modified. The 

template is automatically dated, initially has the default name ’NewFunc’, 

with no input or output type specified. 

4.5.2. The library scroll window 

Just as for the type editor, a scroll window can be invoked to show the types 

and functions available in the libraries, and to fetch them to the scratchpad. 

4.5.3. Typing a function 

The type command is used for inserting types in the input and output parts 

of the function template. Only one type can be inserted in each of the two 

parts. If a compound data structure is desired, a type for it must first be 

created. This is in keeping with the FP model, where a function works on a 

single data object. 

To insert a type, an icon of the type in question must be present on the 

scratchpad. The library search facility is used for fetching types to the pad. 

After selecting the desired type, it is inserted in the input or output part of 

the template simply by positioning the cursor within the appropriate part and 

clicking the mouse again. Now the type will be displayed in the selected 

window. The type is displayed at the first level of refinement (first level 

underneath the icon) since this is the level most often considered. The zoom 



Figure 4-7: The object level function editor template. 



facility can of course be used to change this. Any type already present in the 

window will be removed. 

Figure 4-8 shows the function template filled in ready to program the density 

program. In figure 4-9 we have zoomed two of the data elements to reveal 

their type structure (which in this case is a primitive type). 

The types can be changed by using the type command again. Changing a 

function's types will cause the current function definition to be erased, since it 

becomes meaningless. The input or output type can also be deleted by 

selecting delete. 

A drawing created with the picture editor can be inserted as the pictorial icon 

of a function in the usual way (illustrate), and a name can be associated 

with it (name). When a function has a picture associated with it, this picture 

overrides the function name, so that the icon is displayed instead of the name 

when the function is used within other functions. 



Figure 4-8. Input and output types inserted. 



Figure 4-9: Zooming to show type structure. 



4.5.4. Programming a function 

Connect is the programming command within the object level function 

editor. When connect is pushed, elements in the input and output types of 

the function can be pointed at to indicate how the output is computed from 

the input. Primitive functions and functions defined in the function library 

can also be included in the specification of the function. In detail, the 

composition of an FP expression works in the following way: 

The current expression being built is kept in a stack until it is assigned 

to an output. The stack is displayed in the lower left part of the screen 

and is continuously updated. 

Each time an element of the input type is selected with the mouse, a 

reference to it is pushed onto the stack. 

When an element in the output type is selected, the topmost entry in 

the stack is popped and associated to the output element. This entry 

now describes how the output element is computed from the input. If 

there is already an expression associated to the output element, the old 

expression will be deleted before the new one is inserted. 

When a primitive or user-defined function is selected, this function is 



combined with some of the topmost entries in the stack, depending on 

the arity of the function. For example, if the ’+' function is selected, 

the two topmost entries are popped off the stack, and a new expression, 

representing the addition of the two entries, is pushed back onto the 

stack. All common primitive arithmetic and logic functions, as well as 

relations, are available in submenus that appear when an operator class 

(e.g. arithmetic) is selected. The search function command can be used 

to locate user-defined functions for insertion in the expression being 

built. 

When done is pushed, the output expression specified so far is accepted 

as the definition of the function being created, and the main menu again 

becomes active (no more input-output connections can be made until 

connect is again selected). A warning is issued if the function is not 

completely specified, i.e. if there are still output type elements without 

any expression associated with them. Connect can be repeatedly 

entered and exited to build up or modify the function in a stepwise 

manner. The system will instantly compile the FP expression 

corresponding to the output expressions specified, and this will be 

invoked when the function is executed. The F P expression generated 

can be displayed, if desired. 



Figure 4-10: Programming a simple function (I). 



Figure 4-11: Programming a simple function (2). 



Figure 4-12: Programming a simple function (3). 



Figures 4-10, 4-11, and 4-12 show snapshots of the programming of the simple 

density function. First, the two input elements are selected, and expressions 

representing them pushed onto the stack.1 We have also selected arithmetic 

to find the division operator on the submenu. Next, figure 4-11, selecting 

division changes the stack into the arithmetic expression shown. Finally, we 

point at the output element, the stack is popped, and the final expression 

created (4-12). The system displays the computation of the output element as 

a flow graph. 

We can make some remarks about this programming style: 

As we explained in chapter 3, this kind of interaction mimics the 

informal way we explain programs, by showing pictures of the data and 

defining the computation on them by pointing sequences similar to 

handwaving. This is what we called animated writing. 

Within a function, there is no order imposed on the computation of each 

individual component. This is contrary to traditional von Neumann 

programming, and it is very much in tune with the graphical paradigm 

1 In the prototype implemented, the stack entries are simply shown as the FP expression 
generated ($ is the selection operator). This is illegible to most intended users, so it should 
be replaced by arrows pointing at the actual elements. Also, the display of the resulting FP 
expression is included in the prototype only. 



of building a function as an object on the screen, and the random access 

nature of pictures. It frees the user to define things in the sequence that 

feels most natural. It is made possible by the FP model: The strict 

functional semantics splits the data into an input and an output part, so 

there is no possibility of side-effects. The sequence of function 

argument evaluation is irrelevant. There is no possibility of reusing 

results from another subexpression within the same application. 

Since the result types of all functions and expressions are known at 

programming time, it is easy for the system to check type compatibility 

on the spot. This means that if the programmer tries to attach an 

expression to an output component that is not of the same type, or to 

apply a built-in function to input data of the wrong type, the system 

can immediately refuse to do so, providing instantaneous feedback and 

elimination of errors. 

4.5.5. Inspecting a function 

Usually, when a function is displayed in the object level function editor, the 

correspondences between input and output data are not shown. How each 

output element is computed can be inspected by means of the inspect 

command. When an output element is selected, its relation to the input is 



drawn. Only one output element can be shown at a time in this way in order 

not to make the screen too crowded. The display forms a dataflow graph 

connecting the input and output data via operators, essentially showing a 

drawing of the pointing actions used to program the function (figure 4-13). 

We previously denounced dataflow graphs as a primary means for program 

display. Here, we utilize their ability to convey simple computations by 

showing small graphs in a carefully controlled manner, as secondary displays 

superimposed on the main data display. 

4.5.8. Executing a function 

Program execution is available at the touch of a button. The execute 

command will execute the function displayed once. All input data are 

prompted for one by one. The resulting output data are displayed on or 

adjacent to the corresponding output elements. Figure 4-14 shows the screen 

after executing the density function. 

Notice that program execution is available at the individual function level. 

Any function can be executed as easily as a whole program. In fact, program 

execution is so convenient, and available instantly after a function has been 

defined, that it is reasonable to get into the habit of checking out an 

execution as part of getting familiar with the program. This is what we have 

referred to as reading by execution. 



Figure 4-13. Inspecting a function. 



Figure 4-14. Executing a function. 



4.5.7 . Saving and restoring 

As for types, there is an edit command that moves a function from the 

scratchpad into the template, and a save command that saves it in the 

library. Again, there is no command that directly moves the current function 

to the scratchpad, forcing the user to save the function before using it. 

4.6. Defining functions at the function level 

At the function level, already defined functions are treated as atomic entities 

that are combined in various ways to form a new, compound function. 

Typically, a program consists of a library of simple low-level functions created 

with the object-level editor, and several layers of function definitions built on 

top of each other using the function level editor. Indeed, the system can be 

tailored to provide a programming environment for a particular application 

domain by including a library of functions and types for that domain. With 

the proper set of functions, the programmer might never need to descend to 

the object level of function definitions. 

As we remarked earlier, the split between the object and the function level of 

function editing corresponds roughly to the division between functions and 

functional forms in FP. At the object level, we were concerned with defining 

a function in terms of its effect on data objects. Here, we use functional 

forms to operate on functions. Thus, we are at this level more interested in 



displaying function structures than we were at the object level. Similarly, 

since we do not have to think about the constituents of data objects, but only 

have to make sure we combine functions that are type-compatible, we are 

correspondingly less interested in displaying the data structure. 

This means that we could think of using some kind of dataflow graph to 

represent the functions. We could do this at the object level because the 

graphs were so simple. Here, we have more complex graphs, both in terms of 

the number of nodes, and in terms of the kinds of nodes, since we want each 

functional form to have a specific graphical representation. We have 

therefore designed our own ’structured flowgraph' that allows more 

graphical information to be displayed for each node, both system and user 

supplied, yet is more compact than regular flowgraphs. 

4.6.1. The function template 

When entering the function level editor and selecting the create command, 

the display looks as in figure 4-15. The template is much like the one we saw 

at the object level, but there is an additional function window to the left of 

the input and output windows. This window is used to show a picture of the 

function proper, in terms of a structured flowgraph. The input and output 

data structures are still displayed as for the object level, but their role is now 

somewhat reduced. Function composition happens in the function window, 



and the data displays are used during program execution to prompt for and 

show data. 

4.6.2. Typing a function 

As for the object level editor, types can be inserted in the input and output 

windows to define the argument and result types (type). 

4.6.3. Programming a function 

A functional form is an operator with functions as its arguments. For 

example, the conditional form takes three arguments: the predicate and the 

two alternative functions. Programming at the function level consists of 

invoking functional forms, inserting them at the appropriate places in the 

function being created, and then filling their argument slots with functions 

from the library (insert). 

In detail, the programming proceeds as follows: 

A functional form is selected from the menu, and is inserted by selecting 

the function frame onto which it is to be composed. By this we mean 

that if the expression f ∘ g is currently displayed, and we insert the 

expression h onto g, then the expression f ∘ h ∘ g will result. If we insert a 

functional onto white space, it will be appended to the ‘rightmost’ 

function, i.e. it will become the function closest to the input data. 



Figure 4-15. The function level template. 



The insertion will create a functional frame corresponding to the 

functional. Each functional has its characteristic frame with one or 

more slots that can be filled with functions or more functionals. For 

example, the loop functional has two empty slots, one for the condition. 

and one for the loop body (fig. 4-16; condition is left slot). The 

conditional has three slots (fig. 4-17; condition is middle slot, true 

branch to the left). 

All functionals carry an implicit compose, in that e.g. the expression 

(—>;) (conditional) added onto f yields (—>;) ∘ f. 

Composition is the ‘natural’ functional and is the only one that utilizes 

the depth dimension for display. It is shown by one expression being on 

top of another. The other functionals have their characteristic frame 

shapes. Invoking a compose by itself creates an empty frame. 

Regular functions can be fetched from the library and inserted into the 

empty slots. Their top-level icons will be displayed in the slots together 

with the function name. 

Type checking is performed every time two functions are combined. 



Figure 4-16: The loop frame. 



Figure 4-17 : The conditional frame. 



The system cannot, however, flatly refuse to combine incompatible 

pieces, since an erroneous intermediate state may be necessary to 

achieve a correct result. (E.g., the expression h inserted to create f ∘ h ∘ g 

may be incompatible with f, but a subsequent insertion of i may render 

f ∘ i ∘ h ∘ g legitimate.) The system will flag this by inserting an empty 

compose frame, indicating that there is something missing. The 

function cannot, of course, be executed before all empty slots are filled. 

The delete command is used to remove a single function or functional 

from the compound function being edited. The removal will leave an 

empty slot that can subsequently be filled with the insert command. If 

the types on either side of the empty slot are compatible, the slot is 

removed. 

As the function is being built, the system will determine its position 

within the template, and make adjustments as it is being added to. I.e., 

the picture is not as freely formed as the pictures of data types. This is 

a consequence of flow structure being much more abstract than data 

layout, so that it is natural for the system to exercise more control of 

the format here. 



Figure 4-18 shows an example. We have put a loop around our density 

function and added a function that reads in the data sets. The picture 

corresponds to the Pascal program in Program 4-1. 

GetData; 
while NotDone do 

begin Density; GetData end; 

Program 4-1: Pascal version of fig. 4-18. 

The function application starts at the bottom of the stack of pictures. The 

size and position of a function picture determines which substack it belongs 

to. 

We notice how the function is being built in a stepwise manner from existing 

components, much like that of an erector set. The framework of functionals 

is first built, and is then filled in with functions. 

4.6.4. Executing a function 

A touch at the execute command will start a single execution of the function. 

As at the object level, data are prompted for and displayed in the input and 

output windows. In addition, the function is traced by highlighting the 

components involved in the function window. 

The step command allows more finely grained execution and animation at a 



Figure 4-18: Composing a function. 



pace determined by the programmer. Each time step is pushed, one function 

component is executed. Its icon is highlighted on the display, and its input 

and output data are displayed in the data windows. At each step, the zoom 

command can be used to obtain the definition of the function about to be 

executed, and it can be stepped through recursively in the same way. 

The break command allows insertion of breakpoints, so that a function can 

be animated up to a certain point in the above manner. 

The system serializes the application of functions in a standard way, e.g. the 

construct operator will be evaluated from left to right. 

Serialization is convenient since it simplifies the display, and it makes it easier 

for the user to insert breakpoints. We also observe that, even though FP 

computes with much parallelism, all concurrent branches are independent (no 

side effects), so that serialization is trivial to obtain without changing the 

semantics. When we set a breakpoint, we put a stop on one function node in 

the dataflow network, and all nodes dependent on the output of this node will 

be held up, too. All nodes the breakpoint node depends on will have been 

evaluated when the break occurs. The other nodes may or may not be 

evaluated, depending on the serialization, but this is of no significance when 

inspecting the breakpoint node. 



The serial display is used only for stepwise animation. When the program is 

executed, all parallel expressions are conceptually executed in parallel and 

highlighted to show concurrency. 

4.7. Another example 

Our next example is an implementation of the well-known Towers of Hanoi 

problem, providing an opportunity to show the use of enumerated picture 

data types. 

Figure 4-19 shows the two data types we have created for this example, 

excerpted from the type editor. The Towers type will hold the current disc 

contents of the three pegs, along with a count of the number of discs we have 

to move (represented by the stack of discs above the pegs). The disc count is 

an element of type integer. The three pegs are of type HanoiDiscs, an 
9 

enumerated picture type. 

HanoiDiscs is defined as a regular type, but when inserting elements of type 

picture, it is interpreted as an enumerated picture type with the pictures of 

the elements as the constants of the type. The sequence of insertions of the 

constants determines the order of the type. The built-in operators inc and 

dec can be used to get the next higher and lower picture constant when 

programming with picture types. Here, five pictures are used to represent the 



Figure 4-19: Types for Towers of Hanoi. 



content of a peg of up to four discs. 2 

Figure 4-20 shows the program that recursively solves the Towers of Hanoi 

problem, moving a certain number of discs n from peg A to B via C. The 

program first checks whether there is only one disc left. If so, the disc is 

simply moved from A to B. Otherwise, n-1 discs are moved from A to C via 

B, one disc is moved directly from A to B, and the n-1 discs are moved from 

C to B via A. 

The function MoveACTop (truncated to MoveAC in fig. 4-20) is shown in 

figure 4-21. It is slightly different than the usual formulation in a textual 

language. First, it explicitly swaps its arguments, since there is no parameter 

name substitution that can do this. Secondly, it adds one disc back to the 

number to move, since there is no stack that saves the previous data. The 

one data object passed from function to function acts as a global pool of data. 

Figure 4-22 shows the object-level definition of a swapping function (the 

inspect facility shows the computation of only one output element at a time), 

and figure 4-23 shows the function that subtracts one disc from the number to 

move. Note how we can include constants in the expression. 

2 The alert reader will realize that these pictures are not enough to cover all peg 
configurations, since the discs are of different sizes. The simplified solution illustrates our 
points, though. 



Figure 4-20: A program for Towers of Hanoi. 



Figure 4-21: Moving the n-1 discs. 



Figure 4-22: Swapping two towers. 



Figure 4-23: Subtracting a disc. 



Figure 4-24 shows how one disc is moved from A to B. The dec operator will 

select the picture preceding the current picture value of peg A. Similarly, the 

new B peg is computed from the old one via the inc operator (not shown). 

When the program is executed, the system will ask for initial data. Pictures 

are prompted for by zooming a picture of the picture type on top of the 

picture element (fig. 4-25). The picture value can then be selected by clicking 

the mouse on the desired picture constant. During execution, the picture 

values are displayed completely filling the space occupied by each element, 

i.e. in the space normally showing the element picture (fig. 4-26). In this way, 

stepping through the function will give an animated sequence of how the discs 

move among the pegs. 

4.8. The typing mechanism 

Functional Programming, as originally defined in [Backus 78], is untyped. As 

we explained earlier, we have included a typing mechanism in our system for 

two reasons: First, it allows the programmer to express more semantics as 

interesting pictures within the framework of the system. Second, we wish to 

benefit in the usual ways from type definition and checking. 

There have been a few attempts at extending Backus’ FP with a typing 

mechanism [Guttag 81, Frank 81]. The method used views functions and 



Figure 4-24: Moving a disc from A to B. 



Figure 4-25: Prompting for a picture value. 



Figure 4-26: Animating the disc moves. 



functional forms as type transformers. For example, the apndl function 

transforms a sequence, composed of an element of type T and a sequence of 

elements of type T, into a sequence of elements of type T. Similarly, the 

apply to all functional form has as a result a sequence of elements of the 

range (output) type of its argument function. When we program a function, 

we specify its domain (input) type and range type. Type checking of a 

function definition can now be performed by computing the range type from 

the domain type, using the transformation rules, and comparing it to the 

given range type. At each step, we also check that the intermediate result is 

compatible with the domain of the next function to apply. 

The technique of type transformers has the advantage that it unifies generic 

functions, like apndl, and functions that always result in objects of the same 

type (modeled as a constant transformation). Thus, this framework can be 

used to handle built-in functions, that are often generic, and user-defined 

functions, that are usually specific. 

In our present system, we do not provide the programmer with the capability 

of defining generic functions. Several generic functions are built in, however, 

e.g. arithmetic and list operations. The underlying typing mechanism 

therefore handles the general case. In detail, the type checks we described 

earlier are performed as follows: 



At the object level, pointing actions in the input type create expressions 

on a stack, and pointing actions in the output type compile these 

expressions into the function expression being built (cf. system 

description, above). 

Pointing at elements in the input type merely creates new stack entries, 

so no type checking is done here. 

When a function is applied to an expression on the stack, type 

compatibility is checked. For a user-defined function, this means exact 

match. For a built-in function, special rules depending on the function 

are followed, so that generic functions can be accommodated. 

At the same time, the resulting type of the application is computed. 

For a user-defined function this is the output type of the function. For 

a built-in function, special rules again apply, so that the resulting type 

can be a function of the input type. 

When an expression is inserted in the resulting function expression by 

pointing at elements in the output type, type compatibility is again 

enforced. Since in all cases a user-defined function is created, an exact 

match is required. 



At the function level, functions are connected together as in a dataflow 

graph. Since all function components are user-defined, an exact type 

match is required for each function combination. 

For composition, this means that the output type of the first function 

must be identical to the input type of the second. For the conditional, 

in addition the input types of all three functions involved must be 

identical, the output type of the condition must be boolean, and the 

output types of the branches must be identical. For the loop, the input 

types of both functions must be identical, the output type of the 

condition must be boolean, and the output type of the loop body must 

be the same as its input type. 

Thus, the system could easily be extended to allow for generic user-defined 

functions as well, but this would entail a substantial addition to the user 

interface that would complicate the system beyond what we feel is 

appropriate for this work. 

Note that the built-in functions are all available in separate menus during 

programming. This sets them apart from the user-defined functions that are 

found in the function library. Restricting the generic property to the built-ins 

thereby becomes far less artificial. One can of course argue that the split 



between the two kinds of functions is artificial to begin with, and that it 

destroys some of the uniformity and simplicity of FP. Unfortunately, 

however, we cannot have a typed version of F P without either including an 

elaborate, general generics scheme (as in Ada), or making a split (as is done in 

most von Neumann languages). The solution we have chosen presents the 

programmer with a simple system that still provides access to the most 

important generic operators, and in a way that minimizes confusion. 



Chapter Five 

Programming by example 

So far, our data structures have been quite simple. We have worked with 

collections of data elements, like Pascal records, each of which has again been 

a collection of smaller elements, or atomic pieces of data. In this chapter we 

will present the mechanisms available in PiP that allow more interesting 

structures, like arrays and trees, to be defined, and we shall see how this leads 

us to a version of programming by example. 

5.1. Defining structured types 

5.1.1. Sequence structuring 

The basic data structure of FP is the recursive sequence, and it is natural to 

make this available at the programming level. An FP sequence is a 

generalization of the array. For example, the sequence <1,2,3,4> is an array 

of four elements that can be accessed much like an array in standard 

languages by means of the selection operators in FP. The generalization 

allows the elements to be heterogeneous. This works in two directions: First, 



the elements need not be of the same type. 1 Thus, a sequence can be 

interpreted as a record, and this is what we have utilized to implement our 

typed objects with heterogeneous elements. Second, an element may itself be 

a sequence. If all the atomic elements in such a recursive sequence are of the 

same type, we have available trees of this type. For example, the sequence

<<1,2>,3> may be depicted as shown in figure 5-1. 

Figure 5-1: A sequence drawn as a tree. 

If we wish to make this kind of structuring available in PiP, we have to 

decide how it is to be depicted. To do this, we have to identify what the 

components of the structuring mechanism are and give these a graphical 

representation. An FP object is composed of atomic objects that are 

connected via two mechanisms, sequence, represented by the ','. and 

1 Of course, in PP there are no types, but objects like <23,T,non.sense> map into mixed- 
type sequences in a typed version of PP. 



recursion, represented by the '<>‘ Thus, if we determine how to depict 

atoms, sequence, and recursion, we should be able to depict any object 

structure. The way this is done in PiP is as follows: 

An element of a type may be specified as being a sequence. This means 

that the actual object value corresponding to the type element can be 

any recursive sequence of objects of the element type. We refer to the 

element type as the base type of the sequence. The structure can only 

hold components of the base type. (Note that the base type may itself 

be a structure of other elements, but it is considered ‘atomic’ at this 

level of type definition). 

For such a sequence element, four additional attributes can be attached. 

They are: 

A node picture that tells how an element of a corresponding 

sequence object is to be depicted. This picture is used for 

elements that themselves are composed of other elements or 

sequences of the base type. This corresponds to internal tree 

nodes. 

A leaf picture that tells how elements that are not sequences, i.e. 

that are of the base type of the sequence, are to be displayed. 



A sequence direction that tells in what direction (right, left, up, 

down) the element pictures are to be juxtaposed to show sequence. 

A recursion direction that tells in what direction recursion is to 

be shown. 

A display algorithm, to be described shortly, is employed to construct 

pictures of arbitrary objects using the four attributes above as building 

blocks. 

To see how this works, consider figures 5-2 and 5-3. In figure 5-2, the 

drawing of the bottle is attached as the leaf picture to the element in 

question, and the sequence direction is set to right. A sequence containing 

five elements of the base type, <b1,b2,b3,b4,b5>, will then be drawn as shown. 

This is the way we display arrays. Note that we only need two of the four 

attributes, the leaf picture and the sequence direction, to display linear 

structures. Another example is shown in figure 5-3. Here we attach node and 

leaf pictures of the familiar kind used in tree structure illustrations, sequence 

direction right, and recursion direction down. An element of the form 

<<l1,l2>,l3> will then be displayed as a tree. 

Briefly, the algorithm, upon encountering a sequence, splits the available 



Figure 5-2: Sequence structuring. 

space into adjacent boxes in the sequence direction, displaying one element in 

each. In the case of recursion, the space is similarly split in the recursion 

direction, the node picture displayed in one part and the next level of 

recursion displayed in the other part of the picture. Algorithm 5-1 shows the 

procedure in detail. 



Figure 5-3: Sequence structuring. 

Disp1ay(S. B, E) = 
—- Display object 5 in rectangular area B, 
-— according to the element description E. 

begin 
if S is of E.basetype then display E.1eaf in B; 
else -- S = <s1,...,sn> 

split B in 2 pieces b1 and b2 in E.recursion direction; 
display E.node in b1; 
split b2 in n pieces c1,...,cn in E.sequence direction; 
for each si in S do Display(si, ci, E); 

endif; 
end; 

Algorithm 5-1: Sequence structuring. 

The four element attributes and the base type of the element are referred to 



in an obvious manner. By display X in Y, where X is a picture and Y is a 

rectangular area, we intend that X is resized to fit Y and then shown within 

X. By split Y in i pieces I in Z direction we mean that the rectangular 

area Y is split in i equal-sized areas. The splits run orthogonally to the 

direction Z, so that the pieces are juxtaposed in the Z direction, and are given 

names I in the same direction. Thus, if E.recursion is down, b1 is the upper 

and b2 the lower half. If E.sequence is right, the elements are displayed 

from left to right. 

The four sequence display attributes have default values, so that in most cases 

they may not need to be specified. The pictures default to the picture icon of 

the element base type. The default sequence direction is to the right. The 

default recursion direction is none. This corresponds to the display not being 

split in the recursion direction at all. This is what is desired in most cases, 

where a simple, linear array is to be displayed. Indeed, a tree structured 

sequence is really not very useful, since no data can be stored in the internal 

nodes of the tree. This makes e.g. a search tree impossible, rendering such a 

structure rather vacuous. The section on recursive structuring, below, shows 

how more useful tree structures can be obtained. 

The type editor structure command is used to attach the sequence 

attributes, via four commands on the submenu. 



The display algorithm is not applied automatically to any structured element. 

Rather, structural display is a display function along with zooming, window 

overlap and on-line assistance. It can be invoked in the type and function 

editors by the show subcommand of structure. When show is pushed and a 

sequence element is next selected, this element will be displayed according to 

the algorithm above. This can of course be applied recursively to the 

elements of the sequence. When applied to a non-sequence element, the type 

icon of the element type is shown. Recursion can be turned off by don't 

show. 

Recursive display is most meaningful in the function editor when it can be 

applied to an actual data object. If no data are available, as in the type 

editor, a small example data object will be substituted by the system. 

There are several possible variations to the algorithm above. The only 

natural way to make the sequence split is probably to create equal-sized 

pieces, but there are several alternatives for the recursion split. The 

algorithm above splits according to some fixed factor, e.g. 0.5 (giving two 

equal-sized pieces). We could also ensure that each level of recursion has the 

same space by first finding the number of levels l, splitting the area to begin 

with in l pieces, and then replacing the split statement by ‘move one level 

down‘. Figure 5-4 shows four different displays of the same structure, with 



a) a recursive split with factor 0.5, b) a recursive split with factor 0.707, c) a 

linear split, and d) a Fibonacci split. The advantage of the recursive splits is 

that a structure of any size can be displayed without the upper-level nodes 

getting too small (the size of a node is independent of the size of its subtree). 

This is important, since these are usually the nodes we are interested in. 

Correspondingly, the linear and Fibonacci splits show the total tree structure 

better. In our PiP system, we have used a 0.5 recursive split. 

5.l.2. Recursive structuring 

As we saw above, the kind of recursive structures we can build with sequence 

structuring is not very useful in practice, so this mechanism is mostly used to 

build arrays. But the recursive definition of types as sequences of elements of 

other types gives us another way to define recursive structures. If a type 

contains an element of the type itself (or there is some such element 

somewhere down the type hierarchy) we have potentially recursive data 

objects. In terms of FP, these objects are like the recursive objects above, 

but each internal node can now carry data, since the type description can 

provide for other elements than the recursive ones at each level. To display 

these structures, we could use the zoom mechanism to open up successively 

deeper levels of recursion, but we can also use essentially the same algorithm 

as above. The following enhancements are needed: 



Figure 5-4: Display alternatives. 



Mixed recursion is now possible since there can be nodes in the tree of 

different types. The element description therefore cannot be passed 

from one level to the next, but must be found at each level. 

The test for termination now must check whether the object to be 

displayed is of a type that is not recursive or that the programmer does 

not wish to see recursively. Since the recursive type is a structured type 

(in the FP sense, a sequence) recursion along the main line will not stop 

at this criterion, but must stop when the object in question is empty 

(the empty sequence, ϕ). We are usually not interested in displaying an 

empty node, but rather would like a node with empty components 

('children' in tree terms) to be indicated as a leaf node. We therefore 

display a leaf node in the recursion direction if all elements in that 

direction (see the following) are empty. 

In each type, there may now be several elements that are to be shown 

recursively (mixed recursion), each with its own display attributes 

(pictures and directions). The splitting actions therefore become more 

complicated. The recursion split is performed as shown in figure 5-5. 

First, the elements to be displayed recursively are examined to establish 

in which directions recursion is to be made. If recursion is in a single 



direction, the algorithm is as before. If recursion is in more than one 

direction, a multiple split has to be done, as shown. 

The sequence split is now done within the space for each recursion 

direction. All elements with the same recursion direction are displayed 

sequentially within the space for that direction. To avoid confusion, 

only one sequence direction is allowed for each type, and all elements 

will be displayed according to this direction. 

The structure command is used for attaching recursive attributes and 

displaying recursive structuring as well, thereby unifying and 

simplifying the concepts for the user. There may be several elements in 

a type that can have a recursive display, and it is left up to the user to 

point out which ones it is desirable to display recursively. The display 

algorithm will therefore only pursue recursion on those elements the 

user explicitly has selected with the show subcommand. The order in 

which recursion is specified in each direction determines the order for 

the sequence part of the algorithm. 

The modified algorithm is shown in algorithm 5-2. 



Figure 5-5: Recursive splitting. 



Display2(S, B) = 
-- Display object S in rectangular area B. 

begin 
let E be the element description of S; 
let L be the list of descriptions of elements of S; 
if no element in L is to be displayed structured then 

display E.1eaf in B; 
else 

let r be the number of recursion directions of L; 
split B in r+1 pieces b0,....br according to fig. 5-5; 
display E.node in b0; 
for each recursion direction di or L do 

if all elements of S 
with recursion direction di are empty then 
display E.leaf in bi; 

else 
let n be the number of elements 

2ith recursion direction di; 
split hi in n pieces c1,...,cn in E.sequence direction; 
for each element sj of S with recursion direction di do 

Display2(sj, cj); 
endif; 

enddo; 
endif; 

end; 

Algorithm 5-2: Recursive structuring. 

Figure 5-6 shows a simple example of recursive structuring. The BinTree 

type describes a node of a binary tree. It contains some data, an integer key 

field, and left and right subtrees. The subtrees are defined as elements of 

type BinTree itself, as can be seen in the zoomed picture, figure 5-7. 

Attaching node and leaf pictures, and recursion direction down, we can 

display three-node example subtrees as shown in figure 5-8. 

Figure 5-9 shows another example, using the same BinTree type, but with the 



Figure 5-6: Recursive structuring: a binary tree. 

two recursive elements acting as child and sibling pointers to allow any fan- 

out. We have simply changed the recursion directions, to down for the child 

and right for the sibling. Figure 5-9 shows a type CSTree that contains one 

element of type BinTree, and we have specified recursion on both the child 

and sibling elements of BinTree. We have shown the same structure with two 

different sets of pictures, resulting in one regular tree node diagram, and one 

LISP-style diagram. 

As with the sequence structuring algorithm, the display attributes for 



Figure 5-7: Zooming the subtree structure. 

recursive structuring have defaults that simplify the use of recursive data 

structures. They are the same as for sequence structuring, except that the 

recursion direction defaults to down, since this is most often used. 

Note that this algorithm is completely general, in that it can be applied to 

any type element. If the element is of a type that does not contain any 

recursive elements, such as a basic (built-in) type, the recursion will simply 

stop, and the type icon of the element (which is the default picture) will be 

shown. Also, we see that it is a straight generalization of the previous 



Figure 5-8: Recursive subtree display. 



Figure 5-9: Recursive structuring. 



algorithm, so that, with the proper interpretation, it incorporates the latter 

and can be applied to sequences as well. This has the implication that we do 

not need to be distinctive about what kind of element we attach the 

structured display attributes to. We simply say that they can be attached to 

any element. For an element of a recursive type, and for a sequence element, 

they will be used as described. Otherwise they are ignored. 

Hence, we have achieved an important unification of two related, but 

different, mechanisms in the user interface. From the user’s point of view, 

structuring attributes are general properties. From the system's point of 

view, no confusion can arise, since it is always known whether we wish to see 

a structured display of a sequence or of a simple element with potential 

recursion. 

5.2. Programming with structured data 

5.2.1. Executing with structured display 

The display mechanisms for structured data must be applied to objects of 

such data. This means that it is only during program execution that we can 

benefit from this kind of display. We have therefore not contributed to the 

task of function programming, we have just made it easier to show input and 

output data in an illuminating way during execution. As such, the 



mechanisms are certainly very useful, but we would have liked to give the 

programmer the opportunity to work with the same kind of pictures during 

programming as well. This leads us to the concept of programming by 

example. 

5.2.2. Programming by example 

When we worked on types with only simple data elements, there was a very 

close correspondence between the picture of an element, which actually 

describes a whole family of possible data, and a piece of data that is an 

instance of the element during execution. This is an important mechanism, 

since it is this that gives the programmer the feeling of working on concrete 

data instead of referring to remote entities via proxies. It is made possible by 

laying out the structure of the data and drawing pictures that can be 

identified with them. In the same way that ordinary pictures are interpreted 

as windows into a part of reality rather than indirect references to objects out 

of view, the concrete layout of data is interpreted as the data themselves 

rather than a description of them. 

It is the static nature of simple data that allows us to draw concrete, static 

pictures of them. We would certainly like this to work for dynamically 

structured data as well. This means that the structured pictures we 

developed above have to be available at the programming level too, since we 

want to display types in terms of layout of objects. 



What does it mean when we start displaying data structure in the type slots 

of object-level programming? When we supply a type description as input 

type, we say that the program should accept data of a certain structure only, 

and then process them as further described. For static data, we can specify 

the structure fully as a type. For dynamic data, we can go one step further 

by elaborating on an input element, and making the system show the 

structure of it: If the input data not only satisfies the type description, but 

also is of a form compatible with the data structure shown, then we can go on 

processing it. The natural interpretation of a data structure elaboration of an 

element is that the data structure displayed is a specification of acceptable 

input data. Further, the data shown impose a minimum requirement on the 

actual data during computation. For example, if we expand a sequence 

element to have two components during programming, we can program in the 

usual way, pointing to any of these two components as parts of expressions. 

This means that an object during execution also must have at least two 

components, otherwise the result would be undefined. 

Similarly, an output type specification indicates that the output is going to be 

of a certain structure. Elaborating an output element says that the output 

data should have at least this much structure. 

The step to programming by example is now a short one: If the function is 



independent of the structure of the input, or it always requires the same input 

structure, we specify this function as we have done before, possibly with the 

added requirement of an input data structure. But what if the function 

depends on the structure of its input? For example, a recursive tree traversal 

algorithm will perform differently on a leaf node and an internal tree node. 

We can easily handle this situation by allowing function variants. By letting 

the same function be defined several times, each with different input data 

structure requirements, we get a collection of functions that together handle 

all interesting variations of input data. The function variants define example 

data since each variant handles a whole family of possible objects compatible 

with the example provided. 

Thus, we are talking about a structural form of programming by example. 

Programming with structured types takes the form of telling the system, ‘if 

the data look like this, then do this‘. Looking back at chapter 3, where we 

observed how people like to illustrate their programs, we see how well this 

corresponds to the pictures we draw and how we explain programs: We draw 

examples of typical data structures and describe how the program works on 

them, leaving the generalization up to the listener. 

Generalization is the hard part of programming by example. How can we 

generalize from example data structures in a way that seems obvious and 



deterministic to the user? The key to a useful generalization scheme was 

already mentioned above: Each specified data structure represents a 

minimum requirement. All data objects containing at least this structure can 

potentially be subjected to the corresponding function variant. Among all 

admissible variants for an object, the one requiring the most structure will be 

selected. We will describe in detail below how programming by example 

works in PiP. 

Function variants and matching criteria. In PiP, several functions can 

have the same name. Functions with the same name are taken as function 

variants. That is, when a function with a certain name is to be applied, all 

functions with that name are considered, and the one found most compatible 

with the input data is applied. The compatibility check is performed as 

follows: 

The input type of the function must be the same as the type of the 

data. This is guaranteed by the function editors, which will not accept 

composition of incompatible functions. 

Each of the elements of the type in question is examined. If an element 

has a data structure description associated with it, the corresponding 

object element is also examined to determine whether it is compatible 

with the description. 



For a simple data element, the description can only indicate an empty 

or non-empty element. A non-empty object element is compatible in 

both cases, whereas an empty object element requires an empty element 

description to match.

For a structured data element, the description indicates a tree structure. 

Any object element that contains the tree as a sub-structure is 

compatible. 

For a sequence structure, this specializes to the number of sequence 

components used. If the object element is a sequence with at least this 

number of components, it will match. 

0 Among all the function variants that match a given object, the one with 

the best match is chosen. The ‘best match‘ here means the maximal 

matching data structure description. ‘Maximal’ is in turn interpreted 

as the maximum number of tree nodes (or components of a sequence). 

This means that a variant with a complex data structure description can 

readily be defined as a special case overriding the simpler, general case. 

If several elements have data structure descriptions attached, a 



compromise may have to be found between best matches of the different 

elements. The globally maximal match is found in this case. Note that 

a situation with more than one element with data structure description 

attached, and especially if the global maximum does not coincide with 

the local maxima, probably indicates a badly programmed function that 

should be split up. 

All function variants must of course have the same input and output types, in 

order to allow type checking at edit time. 

The expand subcommand of structure is used to attach data structure 

requirements to functions. If expand is used on an element, a singular (one 

node) data structure is first shown. Then, successive expansions can be used 

to build the desired structure. Expanding a sequence gives one more 

component. Expanding a sequence component or a recursive element gives 

one more level of recursion. The zoom facility may be used to obtain the 

structure of an element so that the right sub-element can be expanded. 

Inversely, the contract subcommand will cause a structure to shrink. The 

element pointed at will disappear. 

Code generation from structured data examples. Once the proper 

data structures are set up in the input and output parts of the function 



template, programming proceeds as before. The correspondence between 

example elements and elements in the actual data object is direct. That is, 

the nodes or components of the actual data are matched directly to the 

example data. For example, pointing at the second component of an example 

sequence generates code that always selects the second component of the 

actual data. Pointing at the right son of the left son of the root of an 

example tree generates code that does the same selections on the actual data. 

This choice is deliberately very simple. Any 'clever' choices, like mapping 

the last component of an example sequence to a function finding the last 

element of any data sequence, will necessarily confuse the programmer. If the 

example data consist of a two-component sequence, pointing to the second 

element sometimes means ‘second’ and sometimes it means 'last‘. So, 

whatever interpretation the system applies, it will be wrong some of the time. 

But it is far better to work with a system that may be wrong sometimes 

because it is consistent in a case where the user is not, than with a system 

that fails when the user is consistent. 



5.3. An example 

As an instance of programming by example in PiP, consider again the binary 

tree node defined in figure 5-6. We will program a function that searches for 

a given key in a tree of such nodes. Programming by example will be needed, 

since the progress of the search will depend on whether the node examined is 

a leaf or internal tree node. 

Figure 5-10 shows two new data types we will use. The input to the search 

problem is described by the type BinTreeOp, consisting of a key to search for, 

and a tree of type BinTree. (The tree shown is the icon of the BinTree 

element.) The result of the search will be in terms of type BinTreeData, 

containing the key and the data of the node found. If a node with the given 

key is not found, the returned key will be -1 (all keys assumed nonnegative). 

Figure 5-11 shows the search function. It simply checks whether the root 

node of the input tree has the desired key. If so, the data are extracted from 

the root (BinGetData). Otherwise, the search continues to the next level, 

moving down to the left or right child (BinGoDown). 

The BinGetData function (fig. 5-12) extracts the data from a zoomed picture 

of the root node. The Bin= predicate similarly compares the input key and 

the key of the zoomed root. BinGoDown (fig. 5-13) is further composed of 



Figure 5-10: Types for binary search. 



Figure 5-11: Binary search function. 



several functions. Depending on whether the root node of the input tree is 

less or greater than the key, the search proceeds to the left or right (functions 

BinLSearch and BinRSearch). Next, the BinSearch function is applied 

recursively. 

Finally, BinLSearch and BinRSearch are where programming by example 

can be used. For if the input tree is actually a leaf node, the key was not 

found, and we have to return the value -1. Otherwise, if the input tree is not 

a leaf, we shall select the left (right) subtree. We program this as two 

function variants for each of BinLSearch and BinRSearch. 

Figure 5-14 shows the first variant of BinLSearch. We have expanded the 

tree element to showing a single leaf node. In this case we put the constant -1 

in the output key, and also in the key of the output tree node, since the 

search will then stop upon the next application of BinSearch. (The other 

elements of the output tree node are irrelevant and can just be copied from 

the input.) 

Next, in figure 5-15 we have expanded the input tree to show one level of 

recursion for the other variant of BinLSearch. Here, the left subtree can be 

pointed at directly and copied to the tree element of the output, effectively 

moving down to the left child. The key field should also be copied. When 



Figure 5-12: Extracting node data. 



Figure 5-13: Moving down to a subtree. 



Figure 5-14: Leaf node variant of left search. 



executing the BinLSearch function, any actual tree with at least the structure 

shown (a non-leaf root node) will match the data structure required by this 

variant, and the left subtree will be extracted. The leaf variant of figure 5-14 

will also match, but since the other variant has more structure it will be 

selected in all cases except when the input data contain a leaf. 

Splitting up the definition of BinLSearch clarifies the case analysis and allows 

the user to focus on one situation at a time. The cases are programmed using 

displays of example data, providing a concrete structure to think about, but 

at the same time covering all possible input data structures. 



Figure 5-15: General variant of left search. 



Chapter Six 

Discussion and conclusions 

6.1. Casual programming 

When designing and discussing a programming system it is certainly 

important that we define the intended audience of the system, and determine 

how and for what purposes these people are supposed to use it. We have 

previously indicated that we have primarily addressed naive or casual users. 

But what kind of programming will these users be interested in? In this 

section we describe more precisely the class of applications we have in mind 

for our system, and comment on the characteristics a system for such use 

should possess. 

6.1.1. The need for a casual programming tool 

In chapter 2 we mentioned that there is a growing need for end-user 

programming tools in the electronic office environment. This is to provide 

the flexibility required by rapidly changing and individualized routines. But 

this is only one part of a general need for employing the powerful 

microcomputers to do specialized information processing tasks. 



For the last four years, the author has himself enjoyed the pleasure of having 

at his disposal a microcomputer in the home. Apart from some standard 

applications, of which text processing dominates, the most important use of 

this computer has been to quickly create small programs for specific problems. 

A typical example is a program that computes the interest on a bank account. 

Several accounts were involved, and the interest rate and method of 

computation were unknown, causing several recomputations on each account. 

Thus, it was not convenient to use a pocket calculator, so a small Pascal 

program was developed. 

The characteristics of these programs are: 

They are short, typically less than 200 lines long. 

Most have been used only once (i.e. one session). 

A relatively long time has passed between the writing of each program 

(a few weeks to several months). 

No standard application was available to solve the problem. 

Other people, whether computer professionals or not, experience the same 

needs. Recently, we received some promotional material for computer 



software describing a similar example: A crop-dusting pilot had spent two 

weeks hacking together a system that provided him with the fairly 

rudimentary computations he needed. 

Writing even small programs with traditional tools can be quite time- 

consuming for casual programmers, and writing a dozen 100-line programs a 

year is certainly not enough to get in good programming shape. Thus, it 

would not have been worth the effort of writing the above programs at all, 

had it not been for the fact that the author because of his profession and 

interests had the programming language and operating system at his 

fingertips, or that the pilot needed his program so badly. Using an off-the- 

shelf package would either have been too complicated (for someone unfamiliar 

with the package), too expensive (if it had to be purchased), or not possible at 

all. It nevertheless remains that for a small group of computer-proficient 

people, the microcomputer represents an extremely handy tool for solving 

relatively simple problems that are still too hard for pen, paper, and pocket 

calculator, and that cannot be covered by an available applications package. 

We would like this power to be available to a much wider class of users. The 

term casual programming refers to the creation of small applications by 

programmers who do not count computer programming as one of their main 

activities or interests. 



6.1.2. Properties of a casual programming tool 

To facilitate casual programming, new programming environments will have 

to be built. These environments must be simple, provide concrete metaphors, 

and generally be much more supportive than current environments intended 

for professionals or students of programming. The systems should be more 

active, since the programmer cannot be assumed to be completely in 

command of the situation at all times. It is reasonable to make a system 

present much information without being asked to do so. For example, the 

system may start explaining things if it is clear that the user has a problem. 

Since the users cannot be expected to remember details about a system 

between each time they use it, systems will have to be self-documentary and 

present their options via menus. Learning the various aspects of systems 

should be accomplished through the use and exploration of it, rather than by 

consulting separate documentation. We thus borrow some of the features of 

computer games, the kind of software that best has succeeded in capturing 

the attention of the user. 

A further important feature of a useful tool for casual programming is 

standardization. No matter how simple and supportive a system is, there 

will still be a core of knowledge about computation that any programmer will 

have to acquire. Our task is to design a tool that makes it as convenient as 



possible to obtain and maintain this knowledge. A standard emerged from a 

long process of evolution ensures the quality of the interface and minimizes 

the effort needed to move between systems. 

A useful analog is the automobile, for which a generic set of physical controls 

and a new vocabulary has been developed. It took a few decades to settle on 

a convenient standard interface for automobiles. This interface, although 

minor variations exist between different cars, is sufficiently standardized so 

that once one masters the fairly simple skill of driving, one can handle any 

car after a brief exploration of its controls. Given that the abstract 

computational model we wish to present to people as a computer is a much 

more complex device, it will probably take longer for a similar standard to 

emerge here. The system we have developed is but one step in the long 

sequence of ideas, trials, failures, consolidations and new ideas that must be 

followed. 

It is interesting to note that our philosophy for building casual programming 

environments is quite the opposite of the school promoted in, e.g., [Dijkstra 

80], which advocates ‘a crusade against anthropomorphic terminology‘ (p 

105), and claims that ‘to get rid of our operational models [is] computer 

science’s major task‘ (p 103). On the contrary, we rejoice with [Krueger 

83] in realizing that ‘with responsive electronics, all our anthropomorphisms 



can become real‘ (p 222). On the other hand, the specific system we have 

developed does replace the traditional operational model with an algebraic 

one, and we have been careful not to carry real world pictures farther than to 

data illustrations, providing only abstract pictures for the algorithmic 

framework. 

6.1.3. PiP is for casual programming 

Programming in pictures and casual programming are certainly independent 

ideas, but they turn out to have a large and interesting intersection. 

We have talked earlier about how pictures convey concrete metaphors, and 

provide a good medium, e.g., for animation and aesthetics, and for creating 

displays with a rich and well-structured information content. Pictures 

therefore seem an obvious candidate as a means for achieving the goals of a 

system for casual programming. The system for programming in pictures we 

have developed was designed with casual use in mind, and exhibits the 

simplicity and support a casual programmer needs. 

On the other hand, pictures do not seem to be able to contribute a whole lot 

towards expressing systems programs. A pictorial debugging tool can 

certainly be of immense value, but as a way to compose the programs 

themselves the utility seems at the moment to be limited: First, since systems 



programs concern abstract data with no ‘real life‘ connection, the argument 

about embedding real life semantics in programs as pictures is no longer 

convincing. The user will want to restrict the display to machine-oriented 

drawings, like boxes and arrows. Second, limiting the definition of a program 

piece to what can fit on a screen is certainly good software methodology, but 

if each piece cannot do very much it can be an impractical constraint. 

Unfortunately, most graphical program representations seen up till now are 

less economical with respect to screen space than text. Third, professional 

programmers are capable of thinking in abstract terms and will therefore not 

want to spend time drawing pictures they really do not need. Finally, several 

empirical investigations (cf. ch. 2) confirm that the less novice a programmer 

is, the less influenced he/she is by the user interface. This is not to say that 

pictures are useless for systems programming, but it seems hard to obtain the 

great benefit we saw for casual programming. 

6.2. Correctness issues 

All programmers make mistakes, so the degree to which a programming 

system can minimize the number of errors in a program after a certain 

amount of effort has gone into it is an important issue. In practical 

programming, a system can contribute to program correctness by preventing 

some class of errors from occurring and aiding in the discovery and correction 

of others. The system at hand makes several contributions in this respect. 



6.2.1. Syntactical errors 

With the usual text editor approach to program composition, quite a large 

number of syntactical errors are usually committed during the first 

formulation of a program. A few passes through the compiler is usually 

adequate to remove these easily, mostly thanks to good use of a typed symbol 

table. l Syntax-directed editors improve the situation by preventing the errors 

from being committed in the first place. This is achieved by selecting 

program structure templates from a menu instead of typing them, or at least 

having the code syntax-checked on the spot. If the editor also maintains a 

symbol table, the checking can include user-defined names as well. Our 

system takes this trend to its conclusion. Since every item used during 

programming is picked from a menu and inserted in a given framework, there 

is really no syntax in the usual sense. The program is simply built from 

existing components, and the question as to whether it conforms to some 

format specification simply does not arise. This means that not only is the 

user prevented from making syntactical errors, he/she does not even have to 

think about the concept. 

l There are still systems (FORTRAN, C) where a typographical error may not show up 
until the linker finds an undefined symbol! 



6.2.2. Semantic errors 

At the next level of errors, we encounter the typing issue. Type checking can 

discover many simple slips of the mind that would otherwise be hard to find. 

Again, the common approach is to let the compiler, as an activity separate 

from editing, take care of this. In our system, type checking is an integral 

part of editing, making it impossible to connect pieces that are not 

compatible. This of course speeds up error correction, but the fact that the 

system can give instant responses to questions of whether two components are 

compatible should also encourage a style of interaction where the machine 

plays a more active role in supporting the user. This allows the programmer 

to spend more time thinking about higher-level issues that the system cannot 

check. 

Part of programming in pictures is the idea of displaying all (and only) 

relevant objects. For example, in a scoped environment, the programmer 

would see only those data that are accessible from the current code, and could 

therefore not make errors regarding data access. This is not very visible in 

our system, since the scoping of FP is trivial. 



6.2.3. Logic errors 

At the higher semantic level, or program logic level, only the programmer is 

in a position to determine whether a given program is correct. But there is 

still a lot a programming environment can do to make this task easier. In 

traditional environments, the editor displays only a minor part of program 

attributes, so a debugger is usually provided to shed more light on the 

program. In our system, we systematically display all important aspects of 

programs, and by unifying these displays, we also show how they are related. 

Merely showing all this information without any effort on the programmer's 

part significantly contributes to the task of locating errors. It should also 

increase the probability that errors are discovered without extensive testing, 

since the progress of program execution is usually displayed whether it has 

been asked for or not. 

Debuggers mostly display current data values. Indeed, we argued in chapter 

3 that data provide the concrete basis around which the program revolves. 

Our system embodies this view and is therefore well equipped to provide the 

proper support by showing how data change through intermediate values. 

The simple algebra developed for FP [Williams 82] gives us several benefits. 

In addition to making it simple to generate expressions from the user's input 

and transforming these into efficient code, it contributes to program 



reliability by providing the programmer with a simple, clear, and well-defined 

model that does not contain any of the fine points and surprises that so often 

cause mysterious errors when using ordinary programming languages. It 

could also form the basis for future extensions to incorporate machine-aided 

program verification. 

6.3. Software engineering issues 

We have in this work explained how a system for programming in pictures 

can help the programmer in thinking about programs, but without explicitly 

relating this to the various phases of program development. The system we 

have designed can aid the user at several levels of program perception, and 

throughout the development cycle. We will here make some further 

comments about this. 

6.3.1. Design 

The design stage cannot be influenced directly by a system that only 

addresses implementation, but the flavor of the tools that are to be used later 

can certainly still have an impact on the design work. For our system, the 

influence on design comes mainly at two levels. 

First, the FP computational model encourages systematic decomposition into 

small components, and promotes the view of a program consisting of data 



that flow between computational nodes, rather than modules that pass control 

among each other and nibble on their own data. Our user interface reinforces 

this view by presenting it in terms of concrete pictures. 

Second, the use in the programming environment of iconic pictures that stand 

for complex structures and convey high-level semantics can be transferred to 

the design environment and yield many of the same benefits we found for 

programming. Usually, program components and key mechanisms are 

identified at the design stage. Now, key pictures and picture elements that 

will later appear in the program can be identified and established at this stage 

too. 

In addition, the existence of a typing mechanism allows the interfaces between 

components to be well defined in a systematic manner supported by the 

system. Our implementation promotes the definition of types as separate 

entities, thereby stressing their role as the glue between functions. Thus, the 

designer sees the system not only as a collection of computational nodes, but 

as a graph where the arcs also carry substantial significance and have to be 

defined carefully. 



6.3.2. Prototyping 

To facilitate prototyping, a system has to provide mechanisms that make it 

easy to write simple versions of programs and then to modify and enrich 

these. Our system aids the programmer in several ways. 

The structure and semantics constraints built into the editor allows a fairly 

relaxed editing style, since the editor will take care of ensuring the well- 

formedness of the program. Thus, programs can easily be sketched, and in 

such a way that even rudimentary sketches can be executed and their overall 

functionality checked. 

The functional model is extremely simple, and encourages small, simple 

components that are used by many parts of the total program. Modifying 

and enhancing a program is thereby made attractive. One can expect a 

development style akin to the productive ‘structured growth‘ paradigm used 

in the LISP community [Sandewall 78]. 

We mentioned earlier that our system embodies the view of a program as a 

hierarchical composition of abstractions by unifying the access path and the 

abstraction path. Thus, the system helps preserve the design decisions by 

ruling out accesses across system components that are incompatible with the 

original design. In traditional systems, these kinds of accesses have a 

tendency to obscure the design as the program evolves. 



6.3.3. Testing 

We have already mentioned how program animation should be an integral 

part of a programming system, both for program creation and inspection. 

Our system significantly aids in the testing process by making program 

execution available at the fingertips of the user, and by displaying as much 

and as many aspects of the program as possible. The system is further 

emphasizing the display of data, the key to an informative debugging aid. 

6.3.4. Maintenance 

As for prototyping, a system that encourages small components and makes it 

easy to modify them can simplify maintenance as well. 

The problem of quickly obtaining an understanding of how a program works 

is particularly apparent during maintenance. The person assigned to make a 

modification is frequently not the original author, and even if he/she is, the 

details of the program may be long forgotten. Our system can help here on 

several fronts: 

Program details are displayed as a dataflow graph superimposed on 

pictures of data. This representation shows program function in a much 

more direct fashion than conventional text, and should therefore be 

faster to parse and understand. The availability of execution further 

contributes to a more complete description that leaves far less to be 

deduced by the reader than is presently required. 



Higher-level program structure is shown as structured diagrams that 

convey information about program composition much more clearly and 

concretely than regular syntax. The diagrams are simple and emphasize 

only the overall structure of the function, suppressing irrelevant detail. 

Pictorial icons are used throughout the system. It is simple for the 

programmer to attach semantic, explanatory information to all program 

components, information that helps the reader to understand what the 

components stand for. Once understood, our ability to recognize 

pictures and attach meaning to them helps in navigating through the 

program and relating the various components. 

6.4. User reactions 

This thesis does not include an empirical investigation of how users have 

responded to the system developed. To achieve such results that are at all 

reliable in a scientific sense, a major experimental effort will have to be 

launched, and there was not room for such an undertaking within the 

framework of this thesis. We have, though, collected several reactions from 

people who have stopped by our office and taken a look at the system, and 

we have of course reflected on the merits of our design ourselves: 

The casual style of programming the system allows was quite positively 



received. In particular, the syntax-free specification of programs by 

simple pointing actions, and the lack of constraints on the sequence of 

these specifications, seem to have created some of the handwaving style 

we had in mind. 

Users reacted positively to the object-level display of a function as a 

flowgraph superimposed on pictures of data. This form of display 

combines a good representation of simple data flow, the flowgraph, with 

a good way to illustrate data, into a picture that shows all major aspects 

of a program without becoming confusing. 

Our systematic assignment of picture dimensions to program aspects 

also seems to be a useful idea. In particular, the zooming mechanism 

that reveals underlying structure was well received and experienced as a 

very natural and powerful feature. 

Creating pictures with our picture editor proved to demand much 

patience and a certain amount of artistic skills. A better graphics editor 

would probably have improved the situation somewhat, but we still 

have a feeling that most people would quickly get tired of drawing their 

own images to the last bit. In a practical system, it would therefore be 



necessary to have access to a picture library. This could be organized 

as a collection of large ‘sheets‘ that could be scanned and pictures and 

picture elements picked up by the editor. It should also be possible to 

contribute pictures to the sheets, and a community of programmers 

should be able to share the same sheets. After some time of usage, 

every programmer would have access to a rich library of good 

illustrations and only occasionally have to resort to original work. 

The FP computational model has been a mixed blessing. For programs 

with simple data structures, like the ones presented in this thesis, its 

simple semantics is certainly convenient. For larger programs, with 

complex structures of heterogeneous data, it is more difficult to use. 

The programmer ends up spending more time writing auxiliary 

functions that extract the interesting data and put the results back 

where they belong, than the actual computation. There is a small 

chance that this is a result of the users still thinking in von Neumann 

terms, but some of the examples we have attempted seem very hard to 

simplify. The FP model was chosen for its many benefits for graphical 

display. It might very well be that we would have ended up with 

another model (e.g. an object-oriented one), had we looked at the way 

people think (concrete objects) instead. 



At present, input data values have to be given by the user every time a 

program is executed. For large data sets or repetitive execution on the 

same data, this is of course unacceptable. Our design had initially a 

fifth tool, a data editor, for the creation of data objects that could be 

used during execution. The inclusion of such a tool would certainly be 

useful, for example providing a large scratchpa.d where data objects can 

reside, represented by icons. Underlying the scratchpad, however, we 

would like to have a database organization to store large amounts of 

user data. In the next section we will comment more on merging 

current trends in personal database systems with a casual programming 

system. 

6.5. Further work 

We started this chapter by defining our long-term goal of a tool for casual 

programming. At the same time, it became clear that developing such a tool 

can only be the result of a long evolutionary process, with contributions from 

many fields and researchers. We hope that we have provided a useful piece of 

the mosaic. As we conclude this thesis, there are a few issues that relate 

directly to what we have done, and that we see as natural extensions of our 

work. 

From a programming language point of view, a major shortcoming of our 



system for programming in pictures is its inability to handle data abstractions 

graphically in a general and powerful way. We commented on this in section 

3.1.1 where we conjectured that this difficult problem may have been one 

reason for the lack of work on data-oriented displays. As we pointed out, the 

core of the problem is that the mapping between the implementation and the 

specification of an abstraction is usually only implicitly given as a simple data 

type definition along with a collection of operators. This means that the 

graphical interpretation of the abstraction must be programmed explicitly. 

Furthermore, the inverse function, the mapping of user pointing actions to the 

underlying structure and the operations on it, must be defined. It seems far 

from trivial to design a framework for this that will not inflict substantially 

more work on the programmer than is necessary to program abstractions in 

conventional languages. 

From a user interface point of view, it is interesting to observe the work being 

done to facilitate end-user programming within the office environment (cf. 

section 2.4). These efforts grow out of the database community, and attempt 

to make it simple to query the database by providing graphical interfaces and 

simple conceptual models. Users are also given a creative role by being able 

to change the structure of the database (manipulate metadata). As these 

systems get to contain more functionality and computational power, they 



approach full-fledged programming systems for end users. Casual 

programming and end-user database programming seem headed for the same 

goal, and it would be useful to attempt a merger of the two views. 

Finally, looking at our research methodology, we have to apply self-criticism. 

We remarked in the introduction how human-computer interfaces now seem 

to be catching the interest of mainstream computer science. But if our focus 

of attention changes, so are our methods likely to be ready for revision as 

well. When we break out of the protective shell of language theory and 

design and start reasoning about human reactions in general, we have to look 

to other fields that deal with similar questions, like psychology and sociology, 

and learn from their methods. These mainly consist of statistically sound 

experiments. The research in this thesis includes no empirical experiment 

that supports its claims about the usefulness of pictures in programs. Of 

course, we have with the help of our colleagues weeded out many unhappy 

design decisions, but it is most unfortunate that our resources precluded a 

thorough statistical investigation. It must be clear that for the part of 

computer science that addresses human concerns, statistical experiments must 

accompany the claims before they can be assumed valid. 



6.6. Conclusions 

What have we learnt from our experience with programming in pictures? 

With our implementation in mind, how do our thoughts and ideas in the early 

chapters of the thesis fare? 

One fact that just has become more clear is the importance of choosing a 

good computational model. The concepts of the model shine through the 

graphical interface and influence the way the user thinks about programming. 

We have seen how the simplicity of FP has made the programming of small 

programs neat, and how its lack of some powerful features can make some 

programming awkward. 

But if the model determines the way programmers reason, what has become 

just as clear is how pictures can help this thought process go smoother. The 

power of pictures to provide concrete handles and to show all the details that 

are usually hidden was well demonstrated in our system. Combined with an 

interaction style that supports the user by suggesting a menu of options, we 

created a system that we believe significantly reduces the amount of abstract 

knowledge and thinking required by the programmer. 

This leads us to another major observation. The advantages of a pictorial 

programming system seems considerable for casual users, but less important 



for professional programmers. We have argued that there is a need for a tool 

for casual programming, and have made a system that exhibits some of the 

properties of such a tool. We think casual programming is a very interesting 

application area for graphical interaction. 

We stressed the importance of data structure display and showed that it is 

possible to design a system where the data structure is the centerpiece around 

which the algorithm revolves. We further showed that animation can be an 

integrated part of program representation based on these displays. 

Our philosophy that a program must be displayed as one object instead of a 

series of multiple views lead us to a careful exploitation of picture dimensions. 

This was very useful, in particular zooming seems to be a powerful technique 

worth exploring. 

We feel the approach of our work has been very successful. Instead of 

working from within the established programming domain and adapting to a 

new medium, we looked first at how people work with pictures and made a 

connection to programming, being only as formal as absolutely necessary. 

This has given us a system that is very different from other attempts in the 

same direction. We feel our solution responds better to the users’ needs. 



Appendix A 

Summary of the FP model 

The FP programming model is fully described in [Backus 78]. We here give 

only a brief summary of the model. 

An FP system consists of: 

1. A set O of objects. O contains a set of atoms, and all finite sequences 

<x1,x2,...,xn> of objects xi, including the empty sequence ϕ. For 

example, if the atoms include the integers, <3, <1,4,1>> is a sequence 

of length 2. The atoms include T and F for predicate evaluation, and a 

special atom ⊥ (read ‘bottom‘) indicating an undefined value. ϕ is 

also among the atoms, it is thus the only object that is both a sequence 

and an atom. Sequences are ‘bottom-preserving‘, i.e. 

<x1,x2,...,xn> = ⊥ if xi = ⊥ for some 1≤i≤n. 

2. A set F of functions that map objects into objects. A function is either 

primitive, i.e. built-in, defined, or it is a functional form (see below). 

All functions in F are bottom-preserving, i.e. f:⊥ = ⊥ for all f ∈ F. 



3. An operation, application. f:x is the result (an object) of applying 

f ∈ F to x ∈ O. 

4. A set F of functional forms that are combinations of functions in F. 

For example, if f,g ∈ F, then f∘g is a functional form, the composition 

of f and g. 

5. A set D of definitions that define and name functions in F, of the form 

Def l≡r, indicating that the symbol l is to denote the function given by 

r. 

We have taken the set of atoms to be all integer and real numbers, character 

strings, T, F, and a set of fixed-size bitmaps interpreted as pictures. Some 

useful primitive functions are: 

Selection: i:x ≡ if x=<x1,...,xn> and n≥i 

then xi else ⊥. 

Tail: tl:x ≡ if x=<x1> then ϕ, 

else if x=<x1,...,xn> and n≥2 then <x2,...,xn>, 

else ⊥. 



Identity: id:x ≡ x. 

Equals: eq:x ≡ if x=<y,z> and y=z then T, 

else if x=<y,z> and y≠z then F, else ⊥. 

Null: null:x ≡ if x=ϕ then T, 

else if x≠⊥ then F, else ⊥. 

Arithmetic: +:x ≡ if x= <y,z> and y,z are numbers 

then y+z, else ⊥. 

etc. 

Distribute left: distl:x ≡ if x=<y,ϕ> then ϕ, 

else if x=<y,<z1,...,zn>> then <<y,z1>,...,<y,zn>>, 

else ⊥.

Append left: apndl:x ≡ if x=<y,ϕ> then <y>, 

else if x=<y,<z1,...,zn>> then <y,z1,...,zn>, 

else⊥. 

Here are some functional forms: 



Composition: 

Construction: 

Condition: 

Loop: 

Apply to all: 

Insert: 

Constant: 

f∘g:x ≡ f:(g:x). 

[f1,...,fn]:x ≡ <f1:x,...,fn:x>. 

(p—>f;g) ≡ if p:x=T then f:x, 

else if p:x=F then g:x, else ⊥. 

(while p f):x ≡ if p:x=T then (while p f):(f:x), 

else if p:x=F then x, else ⊥. 

αf:x ≡ if x=ϕ then ϕ, 

else if x=<x1,...,xn> then <f:x1,...,f:xn>, 

else ⊥. 

/f:x ≡ if x=<x1> then x1, 

else if x=<x1,...,xn> and n≥2 

then f:<x1,/f:<x2,...,xn>>, 

else ⊥. 

_x:y ≡ if y=⊥ then ⊥, else x, 

where x is an object parameter. 



Binary to unary: (bu f x):y ≡ f:<x,y>, 

where x is an object parameter. 

Here is a simple FP program that computes the factorial: 

Def eq0 ≡ eq∘[id,_0] 

Def sub1 ≡ -∘[id,_1] 

Def ! ≡ eq0—>_1;*∘[id,!∘sub1] 



Appendix B 

Code generation 

When the programmer points at pictures of the data structures, the system 

will generate the corresponding FP expressions. This is done in the following 

way: 

Object-level functions 

In the object-level function editor, the function template contains a picture of 

the input data and a picture of the output data. The programmer performs 

three types of pointing actions: 

1. Input data. When the user points at a piece of input data, an 

expression is generated to select that piece of data. Assume, for 

example, that the input data type has four elements. The system 

enumerates them 1-4, in some arbitrary way. A data object will have 

the structure <x1,x2,x3,x4>. Pointing at the second element will 

generate the expression 2 (in Backus’ notation, the operator extracting 

the second element). The expression generated is pushed onto a stack 

for later use. If the element is zoomed, a sequence of selection operators 



are composed. For example, if the second element is zoomed, and the 

third element of the zoomed picture is pointed at, the expression 3∘2 is 

generated. 

2. Operators. When the programmer selects an operator, either from 

one of the built-in menus or from the function library, an expression 

representing the operator is generated and combined with one or more 

of the expressions on the stack. The arity of the function determines 

how many of the elements on the stack should be included. The 

expressions from the stack are combined via a construction operator to 

make a sequence. The resulting expression is pushed back onto the 

stack. For example, if the second and third input elements were first 

pointed at, giving the two corresponding selection expressions on the 

stack, selecting the addition operator would create the expression 

+[3∘2]. All user-defined functions have an arity of one. Data types 

should be used to build composite arguments. 

3. Output data. The pointing actions successively build an FP 

expression that describes how the output is computed. When an 

element of the output type is selected, an expression is removed from 

the top of the stack and inserted as the generating expression for the 



element in question. A construction operator is used to combine the 

expressions for the different elements. For example, if the output data 

type has three elements, an initial (empty) expression [ , , ] is set up. 

Next, if the second output element is pointed at, and the stack contains 

the expression E, the expression [ ,E, ] will result. If the output type is 

zoomed, extra levels of construction operators will be inserted. For 

example, if the second element is zoomed and the first element of the 

zoomed picture is selected, [ ,[E, ], ] will be generated (assuming that 

the type of the zoomed element has two elements). The brackets of the 

constructions correspond directly to the brackets of the FP sequences 

output by the function being built. 

Programming with structured data involves the same mechanisms. Much like 

zooming, the elaboration of input or output data structure gives rise to 

compositions of selection operations and nested constructions. Function 

variants use the null predicate to determine the structure of incoming data. 

It is clear that code generation according to the above scheme cannot always 

result in the most efficient code. For example, an expression of the type 

[1∘1, 2∘1] is usually less efficient than [1,2]∘1. A function that swaps two 

elements will generate [2,1] instead of using the more efficient reverse 

operator. For this reason, a separate optimization pass should be applied to 



the final expression generated. FP lends itself quite well to such optimization, 

and several algebraic laws have been discovered that can be utilized [Islam 

81, Kieburtz 81, Williams 82]. 

Function-level functions 

The function-level code generation is trivial, since the programmer directly 

specifies the functional forms to be created. 



Appendix C 

Implementation status 

The prototype implementation of our Programming in Pictures system has 

been under development for the past 2 years, as an activity parallel to the 

thesis work. The system runs on a Sun 100 Workstation and consists at 

present (November, 1984) of about 10,000 lines of C code, building on the 

SunCore graphics library provided by Sun Microsystems. A system diagram 

was given in chapter 2. 

The system does not provide all the features described in this thesis. 

Roughly, we have implemented chapter 4, but not chapter 5. A few things 

are still missing from what is described in chapter 4: The help facility and 

type checking are not implemented, and animation is still lacking single- 

stepping and execution breakpoints. Parameter prompting is done by 

displaying a window with explanatory text rather than by the region 

highlighting suggested. 
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